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Chemicals and materials. Chemicals used in this work containing trisodium citrate 

dihydrate (Na3C6H5O7·2H2O), nitric acid (HNO3), urea (CH4N2O), cobaltous nitrate 

hexahydrate (Co (NO3)2·6H2O) and copper(ii) nitrate hydrate (Cu (NO3)2·3H2O) were all 

bought from FUJIFILM Wako pure Chemical Corporation and KISHIDA CHEMICAL 

Co., Ltd. (Japan). Above reagents were all analytical reagents and without further purified.

Characterizations and product analysis. Scanning electron microscope (SEM; JSM-

6510, Japan) was applied to explore the prepared electrodes’ morphology. Transmission 

electron microscope (TEM; JEOL ARM-200F) was conducted to characterize the particles 

exfoliated from the electrode surface. X-ray diffraction (XRD; RINT2100VPC/N, Japan) 

with Cu-Ka radiation was used to determine the chemical information. The outmost surface 

composition was determined by X-ray photoelectron spectroscopy (XPS) measurements 

(Thermo-VG Scientific, USA). The surface roughness and related data were detected via 

atomic force microscope (AFM; SPM-9700HT, Japan). Fourier transform infrared (FTIR) 

measurements were conducted via a Bruker Vertex 70 FTIR spectrometer which equipped 

KBr pellet technique. 

All electrochemical reduction reactions were measured in a typical H-cell with three-

electrode configuration via electrochemical workstation (CHI760E). The saturated silver 

chloride reference electrode (Ag/AgCl) worked as reference electrode, the platinum wire 

played the role as counter electrode, and CuCo-related electrodes were used as working 

electrodes. The cathode and anode section were separated by a proton exchange membrane 

(Nafion®212) so that only H+ could be transferred between 2 compartment and products 

were prevented to shift to and oxidized in anode compartments. After the KHCO3 solution 

was purged with N2 for at least 30 mins to achieve N2 saturation, CV was performed in the 

N2-saturated electrolyte at a scan rate of 50 mV s−1. Prior to recording the CV data, the CV 

was cycled for at least 30 mins and over 30 cycles until the CV curves of consecutive scans 

completely overlapped. Subsequently, LSV measurements were conducted at a scan rate 

of 5 mV s−1. Similarly, CO2 was introduced to replace N2 and bubbled into the cathode, 

and both CV and LSV measurements were carried out under CO2-saturated conditions. 

Again, before recording the CV and LSV data, the CV was cycled for at least 30 mins and 

over 30 cycles until the consecutive CV curves fully overlapped. After conducting CV and 

LSV under CO₂-saturated conditions, we performed electrolysis of CO₂ at different 
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potentials, with each electrolysis process lasting for one hour. Electrochemical specific 

active surface area (ECSA) of E-CuCo and CuCo in this work was determined and 

calculated via CV test under different scan rates and electrochemical double-layer 

capacitance in the non-Faradaic area. The electrodes performance was also characterized 

by electrochemical impedance spectroscopy (EIS) in the mode of AC impedance at 

electrolysis voltage with the frequency from 0.1 M Hz to 0.01 Hz. ECR electrolysis at 

different potentials was measured to determine the potential effect and electrode 

performance. After electrolysis, both gaseous and liquid products were collected from the 

top of gas-tight cell and electrolyte, respectively and then investigated by GC, LC or NMR. 

The Faradaic efficiency (FE) was calculated against calibration curve and using Eq. 

(1):[1] 

                      (1)
FE=

mnF
𝑄

Where m means the electrons needed when CO2 reduced to a certain product of 1 mol, 

n is the product amount (mol) generated from ECR in 1 h, F is Faraday constant (F = 96485 

C mol-1), Q is the quantity of electric charge consumed from a certain time of ECR.
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Fig. S1. SEM mapping images of CuCo for Co (yellow), Cu (blue) and O (white).

Fig. S2. EDS mapping images of oxidized Cu
X
Co

Y
 for Cu, Co, O.
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Fig. S2. AFM images of E-CuCo.
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Fig. S3. Cu LMM of CuCo and E-CuCo.
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Fig. S4. HRTEM images of E-CuCo.
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Fig. S5. TEM mapping, Co (green) and Cu (red) of CuCo.
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Fig. S6. I-t curves of (a) CuCo and (b) E-CuCo at different potentials.
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Fig. S7. H2, C1 and C2+ products selectivity of (a) CuCo and (b) E-CuCo.
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Fig. S8. ECR product analysis of CuCo in CO2-saturated KHCO3 at different potentials.
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Fig. S9. (a) LSV curves under CO2 and N2 conditions and (b) HER selectivity of E-Cu.
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Fig. S10. Stability and (a) i-t curve, (b) SEM, (c-d) XPS and (e) Cu LMM spectrum of E-

CuCo after long-term electrolysis during ECR. 
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Fig. S11. Potential-dependent ATR-SEIRAS spectra recorded during ECR on (a) CuCo, 
(b) E-CuCo electrode in a CO2-sturated 0.5 M KHCO3 solution ranging from 1000 to 
4000 cm-1. 
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Fig. S12. ATR-SEIRAS study of CO intermediates produced in CO2-purged 0.5 M 
KHCO3 electrolyte in real time for (a) CuCo and (b) E-CuCo.
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Fig. S13. In situ ATR-SEIRAS spectra of O-H stretching vibration at applied potentials 
from 0 to -1.6 V vs. Ag/AgCl in CO2-saturated KHCO3 solution on (a) CuCo and (b) E-
CuCo.

 

 

  

 
 

 
 

 
 

3800 3600 3400 3200 3000
 

  
A

so
rb

an
ce

Wavenumber (cm-1)

 

 
 

 
 

 
 

 
 

3800 3600 3400 3200 3000
 

 

A
so

rb
an

ce

Wavenumber (cm-1)

a b-0.95 V

OCP
-0.15 V

-0.95 V

OCP
-0.15 V



S17

Fig. S14. Schematic illustration of E-CuCo for ECR to C2+ products.
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Table S1. Roughness parameters of CuCo and E-CuCo.

Ra[nm] Rz[nm] Rzjis 
[nm]

Rq[nm] Rp[nm] Rv[nm]

CuCo 167.299 749.654 371.513 191.354 284.452 465.202

E-CuCo 213.861 938.838 450.148 243.247 421.861 516.977
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Table S2. A summary of peak area ration and the full width at half maximum of each 
peak for CuCo according to XPS peaks fitting results.

Co 2p

Binding 
energy (eV) 

Full width 
high 

maximum 
(eV) 

Area (cps, 
eV)

Content

Co0 2p3/2 778.69 1.7 291.45

Co0 2p1/2 793.65 1.71 149.84

42.26%

Co2+ 2p3/2 780.12 3.01 397.67

Co2+ 2p1/2 795.66 3.01 204.70

57.74%

Cu 2p

Binding 
energy (eV) 

Full width 
high 

maximum 
(eV) 

Area (cps, 
eV)

Content

Cu+ 2p3/2 932.56 2.39 1738.94

Cu+ 2p1/2 952.45 2.39 950.38

55.68%

Cu2+ 2p3/2 934.13 2.51 1381.33

Cu2+ 2p1/2 954.38 2.51 583.31

44.32%
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Table S3. A summary of peak area ration and the full width at half maximum of each 
peak for E-CuCo according to XPS peaks fitting results.

Co 2p

Binding 
energy (eV) 

Full width 
high 
maximum 
(eV) 

Area (cps, 
eV)

Content

Co0 2p3/2 780.08 2 291.45

Co0 2p1/2 795.85 2 149.84

55.4%

Co2+ 2p3/2 781.66 2 397.67

Co2+ 2p1/2 797.45 2 204.70

44.6%

Cu 2p

Binding 
energy (eV) 

Full width 
high 
maximum 
(eV) 

Area (cps, 
eV)

Content

Cu+ 2p3/2 932.21 1.43 3029.04

Cu+ 2p1/2 951.95 1.57 2291.56

100%
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Table S4. Comparison of the performances of ECR to n-propanol and C2+ products 
performances of Cu-based electrodes.

Electrodes Applied potential FE (%) Reference

E-CuCo -0.65 V vs RHE C2+, 35.12%
n-propanol, 6.92%

This work

E-CuCo -0.85 V vs RHE C2+, 29.89%
n-propanol, 10.50%

This work

Cu2S-Cu-V -0.95 V vs RHE C2+, 32 ± 1%
n-propanol, 8 ± 0.7%

[2]

Cu-B  -1.15 V vs RHE C2+, 53.5% 
n-propanol, 7.1%

[3]

Cu-P -1.15 V vs RHE C2+, 50.3%
n-propanol, 5.1%

[3]

trans-CuEn -0.86 V vs RHE C2+, 55.2%
n-propanol, 3.5%

[4]

trans-CuEn 2 -0.75 V vs RHE C2+, 50.3%
n-propanol, 3.5%

[4]

Cu nanocrystals-20 -0.85 V vs RHE C2+, 38.3%
n-propanol, 10.6%

[5]

Plasma-Activated 
Copper Nanocube

-1.0 V vs RHE C2+, 73%
n-propanol, 9%

[6]

Cu2O-Derived Cu 
Catalysts

-0.98 V vs RHE C2+, 59.8%
n-propanol, 5.4%

[7]

Cu (100) electrode -1.0 V vs RHE C2+, 76%
n-propanol, 5.5%

[8]

Cu foil KF cycled -1.0 V vs RHE C2+, 28%
n-propanol, 3.08%

[9]

Cu2O-derived Cu 
with PdCl2

-0.9 V vs RHE C2+, 37.7%
n-propanol, 6.1%

[10]

Cu4Zn -1.05 V vs RHE C2+, 51.39%
n-propanol, 4.39%

[11]
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Table S5. Comparison of the performances of ECR on Cu and Co-based electrodes.
Electrodes Applied potential FE (%) Reference

CoP2O6/HCS-Cu -0.66 V vs RHE Formate，89.9% [12]

CoCu-N-C -0.68 V vs RHE CO, 76.5% [13]

CoCu(1:3)-N-C-900 -0.53 V vs. RHE CH4, 21% 
CO, 35%
H2, 30%

[14]

Co3Cu/CFs -0.8 V vs. RHE CO, 68
HCOOH, 29%  

[15]

Co3O4/Cu HNT -0.4 V vs RHE CO, 98% [16]

Sn-Co/Cu foam -1.36 V vs RHE Formate, 72.2% [17]

Cu-Co bimetallic 
nanoparticles

-2.1 V vs. Ag/Ag+ CO, 97.4% [18]

Cobalt-decorated 
copper thin films

-0.65 V vs RHE Formate, 80% [19]

Copper Cobalt 
Selenide

-0.9 V vs RHE Formate, 24.18%
Ethanol, 23.63%
Acetate, 27.82%
Methanol, 15.65%

[20]

Copper Cobalt 
Selenide

-0.25 V vs RHE Acetate, 98.13% [20]

Copper Cobalt 
Selenide

-0.1 V vs RHE Ethanol, 27.62%
Acetate, 65.92%

[20]
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