Supporting Information

Pushing the limits of the layers: Completely delaminated α -Ni(OH)₂ – an enhanced electrocatalyst for OER

Priya Pathmanathan ^a, A. Sivanesan ^b, A. Gomathi ^{a*}

a-Department of Chemistry, Mahindra University, Hyderabad 500043, India. b-ScienceGears Pty Ltd, Brisbane, Queensland 4053, Australia.

Binding Energy (a)()	Ovidation state
Binding Energy (ev)	Oxidation state
855.4	Ni ²⁺
873	Ni ²⁺
857.2	Ni ³⁺
232.4	Mo ⁶⁺
235.5	Mo ⁶⁺
231.7	Mo ⁵⁺
234.8	Mo ⁵⁺
780.5	C0 ²⁺
788.8	C0 ²⁺
803.2	Co ²⁺
779.8	C0 ³⁺
795.7	C0 ³⁺
796.6	Co ²⁺

Table S1 XPS binding energy values

S.No	Catalyst	Overpotential (mV)	Tafel (mV	Cdl (mF	Stability (h)	Medium	Ref
			dec-1)	cm-2)			
1	NMC-6	240@ŋ ₁₀	55	14	100	1M KOH	This
							work
2	NiFe/NiO	245@ŋ ₁₀	25.7	14.54	30	1M KOH	1
3	α-LHs	468@ŋ ₁₀	138	34.8	22	1M KOH	2
4	Ni(OH) ₂ -NP	260@ŋ ₁₀	78.6	3.74	10	1M KOH	3
5	Fe ³⁺ co-decorating Ni(OH) ₂ /NiOOH (Pi-Fe:NiOH)	118@ŋ ₁₀	52	34.2	500	1M KOH	4
6	$LaFe_{0.8}Co_{0.2}O_3/Ni(OH)_2$	329@η ₁₀	95	7.055	24	1M KOH	5
7	Ni(OH) ₂ /NF	172@ŋ ₁₀	150	71	24	1M KOH	6
8	Ni/Ni(OH) ₂	400@ŋ ₁₀	85	-	32	1M KOH	7
9	NiCoFe LDH/MoO ₃	270@ŋ ₁₀	73	0.46	70	1M KOH	8
10	FeCoNi-MoO ₄	204@ŋ ₁₀	50.6	43.8	48	1M KOH	9
11	NiMo-Fe	217@ŋ ₁₀	30.05	-	200	1M KOH	10

Table S2 Literature comparison of NMC-6

Figure S1 CV of as-synthesized compounds at a scan rate of 5 mV s⁻¹

Figure S2 Forward LSV of as-synthesized compounds at a scan rate of 5 mV s⁻¹

Figure S3 CV at different scan rate under non-faradic region

Γ	R ₁ R ₂
Rs	
L	СРЕ СРЕ

Samples	Rs	R _{ct}
NO	1.83	4.5
NM	1.33	1.3
NMC-6	0.313	0.5
NMC-24	0.789	1.9

Figure S4 Bode diagram and Nyquist plot circuit diagram representation of as-synthesized compounds

Figure S5 Before (A) and after(B) FESEM and backward LSV image of NMC-6 @ 100 mA cm⁻²

Figure S6 Chrono potentiometry study of NM @ 100 mA cm⁻²

Figure S7 Quantitative results of elemental distribution of sample NM, from FESEM (Figure A) and TEM (Figure C); elemental distribution for sample NMC-6, from FESEM (Figure B) and TEM (Figure D) measurements

Reference

- 1 Jeon JH, Kim JE, Kim TH, Park CS, Jung K, Yoon J, Kim J, Kim YH, Kang KS, *Electrochemistry Communications*, 2024,**160**, 107668.
- 2 Sanchis-Gual R, Jaramillo-Hernández C, Hunt D, Seijas-Da Silva Á, Mizrahi M, Marini C, Oestreicher V, Abellán G, *Chemistry–A European Journal,* 2024, **30(5)**, e202303146.
- C. Luan, G. Liu, Y. Liu, L. Yu, Y. Wang, Y. Xiao, H. Qiao, X. Dai and X. Zhang, ACS Nano, 2018, 12, 3875–3885.
- 4 Y. Li, J. Liu, S. Li and S. Peng, ACS Catalysis, 2024, **14**, 4807–4819.
- 5 D. Kubba, I. Ahmed, A. Roy, P. Kour, C. S. Yadav, S. K. Sharma, K. Yadav and K. K. Haldar, ACS *Appl Nano Mater*, 2024, **7**, 1536–1547.
- 6 Y. Rao, Y. Wang, H. Ning, P. Li and M. Wu, ACS Appl Mater Interfaces, 2016, **8**, 33601–33607.
- 7 P. Pathmanathan, A. Gomathi, A. Ramesh and C. Subrahmanyam, *RSC Adv*, 2024, **14**, 21808–21820.
- 8 C. Dong, M. Guo, W. Gao, P. Hao, F. Lei, J. Xie and B. Tang, *J Colloid Interface Sci*, 2022, **627**, 891–899.
- 9 W. Fan, C. Liu, H. Wang, J. Wu, S. Chen, W. Fang, C. Wu, Y. Quan, D. Wang and Y. Qi, *J Colloid Interface Sci*, 2024, **662**, 460–470.
- 10 Liao H, Zhang X, Niu S, Tan P, Chen K, Liu Y, Wang G, Liu M, Pan J, *Applied Catalysis B:* Environment and Energy, 2022, **307**, 121150.