Supplementary Information (SI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2025

1

SUPPRTING INFORMATION

2	
3	Optimization of SnO ₂ -Based Electron Transport Layer Using
4	Cerium Oxide for Efficient and Stable Perovskite Solar Cells
5	Zhipeng Liu ¹ , Zhiwei Gu ¹ , Yang Lv ¹ , Zhiqin Su ¹ , Jian Sun ¹ , Linlin Qiu ³ , *, Pingfan Du ^{1, 2} ,
6	*
7 8	¹ College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
9	² Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province,
10	Zhejiang Sci-Tech University, Hangzhou 310018, PR China
11 12	³ College of Textile and Apparel, Quanzhou Normal University, Quanzhou 362000, China *Corresponding author. Tel.: fax: +86 571 86843603
13	E-mail addresses: dupf@zstu.edu.cn (P. Du); qiull@qztc.edu.cn (L. Qiu)
14	L-man addresses. dupr@zsta.edd.en (1 . Du), qlun@qzte.edd.en (L. Qiu)
15	
16	
17	
18	
19	
20	
2.1	
21	
22	
22	
23	
23	
24	
ΔŢ	
25	

Experimental Section

1

2 Materials: Cerium (III) acetylacetonate hydrate and ethanol were provided by Shanghai Macklin Biochemical Co., Ltd. The ITO glass substrates were fabricated by Advanced Election Technology Co., Ltd. Lead (II) iodide (PbI₂, 99.99%), formamidinium iodide (FAI, 99.5%), methylammonium bromide (MABr, 99.5%), cesium iodide (CsI, 99.99%), Tris[4-(1, 1-dimethylethyl)-2-(1H-pyrazol-1-yl)pyridine]cobaltsaltwith1, 1, 1-trifluoro-N-[(trifluoromethyl)sulfonyl]methanesulfonamide (FK209 Co(III) TFSI, 98%), lithium bis(trifluoromethanesulfonyl)imide (Li-TFSI, 99.95%), 4-tert-butylpyridine (t-BP, 96%), 2, 2', 7, 7'-Tetrakis(N, N-di-p-methoxyphenylamine)-9, 9'-spirobifluorene (spiro-OMeTAD, 99.5%) and phenyl-C61-butyric acid methyl ester (PC₆₁BM, 99%) were purchased from Xi'an Polymer Light Technology Corp. SnO₂ colloidal solution (15% in water) was purchased from Alfa Aesar. Dimethyl formamide (DMF, 99.8%, anhydrous), 12 dimethyl sulfoxide (DMSO, 99.9%, anhydrous), isopropanol (IPA, 99.7%), chlorobenzene 13 (CB, 99.8%, anhydrous), and acetonitrile (ACN, 99.8%, anhydrous) was supplied by Aladdin. All chemicals were used as received without further purification. SnO₂/CeO_x ETLs fabrication: the colloidal SnO₂ aqueous dispersion solution was 16 diluted using deionized water to 2.14 wt% to obtain SnO₂ precursor. Then Cerium (III) 17 acetylacetone hydrate was added to ethanol at a solution concentration of 2 mg/ml and then treated in an ultrasonic bath for 30 min to obtain a CeO_x precursor solution. These precursors were then spin-coated onto pre-cleaned ITO glasses at a rate of 4000 rpm for

30s, followed by thermal annealing at 150 °C for 30 min in ambient air, to fabricate SnO₂

- 1 and SnO₂/CeO_x ETLs.
- 2 **Perovskite precursor solution:** The perovskite precursor was prepared with PbI₂ (742.2
- 3 mg), FAI (224.4 mg), MABr (16.2 mg), and CsI (19.8 mg) are dissolved into anhydrous
- 4 DMF/DMSO (v/v: 8:2) mixed solution and stirred at room temperature for 5 h.
- Device fabrication: Firstly, the (indium tin oxide) ITO glass substrates were sequentially cleaned with detergent adding into deionized water, acetone, and ethanol for
- 7 15 min each in an ultrasonic bath. The glass substrates were cleaned with IPA at 5000 rpm
- 8 for 15 s, and then dried at 60 °C for 10 min. Before depositing the ETL films and the
- 9 perovskite films, all the substrates were further treated with UV-ozone for 15 min. The
- 10 perovskite films were deposited onto the ETL substrates via a two-step spin-coating at
- 11 1000 r/10 s and 5000 r/30 s. After the perovskite precursor were dropped, the antisolvent
- 12 EA were rapidly dropped on the center of substrate 15 s prior to the end of the program,
- 13 the as-prepared perovskite films were annealed at 150 °C for 30 min. Upon cooling to room
- 14 temperature, The HTL precursor solution was prepared by mixing 70 mg of Spiro-
- 15 OMeTAD power, 20 μL of t-BP, and 70 μL of Li-TFSI solution (170 mg Li-TSFI dissolve
- in 1 mL ACN) and 50 μ L of FK209 Co (III) TFSI Salt (150 mg/mL in ACN) in 1 mL of
- 17 CB, was spin-coated on the top of the perovskite films at 4000 rpm for 30 s. Finally, an Ag
- 18 electrode with a thickness of 80 nm with an active area of 0.06 cm² was deposited by
- 19 thermal evaporation. All devices were assembled in ambient air with a relative humidity of
- 20 25-35% and a temperature of 18-23 °C.
- 21 Characterization: Top-view and cross-sectional scanning electron microscopy (SEM)

- images were characterized through a Field-emission scanning electron microscope (FE-SEM, Ultra 55, Zeiss, Germany) with an electron beam accelerated voltage at 3 kV. The CeO_x nanoparticles were observed by transmission electron microscopy (TEM, JEOLJEM 2100) at 200 kV. Wide-angle XRD measurements were implemented with a Bruker D8 Advance instrument using a Cu K α source (40 kV, 1.54 Å) with an incidence angle of 1.0°. X-ray photoelectron spectroscopy (XPS, K-Alpha, USA) is performed using a micro-focus monochromatic Al Kα X-ray source, corresponded to the instrument resolution of 0.45 eV. UPS was carried out by using an ultraviolet photoelectron spectrometer (ESCALAB 250Xi, Thermo Fisher). The UV-visible absorption and transmission spectra were recorded by a UV-Visible spectrophotometer (UV-vis, P4, China). The electrochemical impedance spectroscopy (EIS) is measured by a potentiostat (Im6ex/Zahner) to explore charge transfer properties and battery performance with an alternative signal amplitude of 10 mV and a 12 frequency range of 0.01-100 kHz. The steady-state photoluminescence (PL) spectrum PL 13 and Time-resolved PL (TRPL) decay were measured via Fluo Time 300 fluorophotometer Lifetime Spectrometer. Incident photo-to-current conversion efficiency (IPCE) curves are recorded using a quantum efficiency (QE)/IPCE measured system (Solar Cell Scan 100/Zolix) and calibrated by a monocrystalline silicon diode. The J-V characteristics of 17 PSCs were measured with a source meter (2400-SCS, Keithley) under AM1.5 radiation (1 sun conditions, 100 mW cm⁻²). 19
- 20 **Equation S1.** Gaussian function for peak analysis and peak fitting:

$$y = y_0 + \frac{Ae \frac{-4In(2)(x - x_c)^2}{w^2}}{w\sqrt{\frac{\pi}{4In(2)}}}$$
(S1)

- 2 y_0 represents the ordinate position of the baseline, A is constant, x_c is the abscissa
- 3 corresponding to the highest intensity of the diffraction peak, and w represents the half-
- 4 peak width value (FWHM).
- 5 **Equation S2.** The Debye-Scherrer formula:

$$D = \frac{k\lambda}{w\cos\theta} \tag{S2}$$

- 7 D represents the grain size, k is constant, λ is the incidence wavelength of X-rays, θ is 8 the diffraction angle, and w represents the FWHM value.
- 9 **Equation S4.** The PL decay curves were fitted using the following bi-exponential decay 10 function:

$$Y = A_1 \exp\left(-\frac{t}{\tau_1}\right) + A_2 \exp\left(-\frac{t}{\tau_2}\right) + y_0$$
(S3)

- where A_1 and A_2 are constants representing the contributions of the fast and slow components, respectively. The fast transient component, τ_1 , is linked to the surface characteristics, while the slow transient component, τ_2 , is linked to the volume characteristics. y_0 is an offset constant.
- 16 **Equation S5.** The average TRPL lifetime was calculated according to:

$$\tau_{ave} = \frac{A_1 * \tau_1^2 + A_2 * \tau_2^2}{A_1 * \tau_1 + A_2 * \tau_2}.$$
 (S4)

18 **Equation S6.** The open-circuit voltage dependence on light intensity was fitted using

1 the following equation:

$$V_{oc} = \frac{nkT}{q}ln(I)$$
 (S5)

- where n is the ideality factor, k is the Boltzmann constant, T is the absolute temperature,
- 4 q is the elementary charge, and I is the light intensity.
- 5 **Equation S7.** The trap density was calculated using the following equation:

$$N_{defects} = \frac{2\varepsilon_0 \varepsilon V_{TFL}}{eL^2}$$
 (S6)

- 7 where ε_0 is the vacuum permittivity, ε is the relative dielectric constant of the perovskite,
- 8 e is the electron charge, and L is the thickness of the perovskite layer.
- 9 Equation S8. The hysteresis index of the PSCs was calculated according to the
- 10 following equation:

12

13

$$Hysteresis\ index = \frac{PCE_{Reverse} - PCE_{Forward}}{PCE_{Reverse}} \times 100\%$$
 (S7)

Figure S1. Optical image of CeO_x precursor solution.

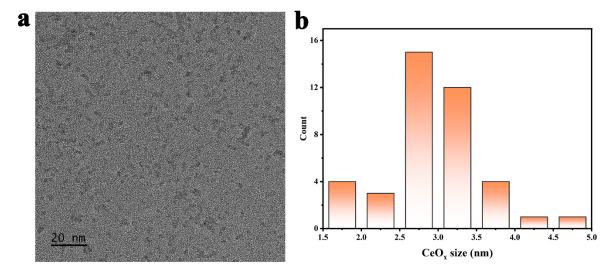
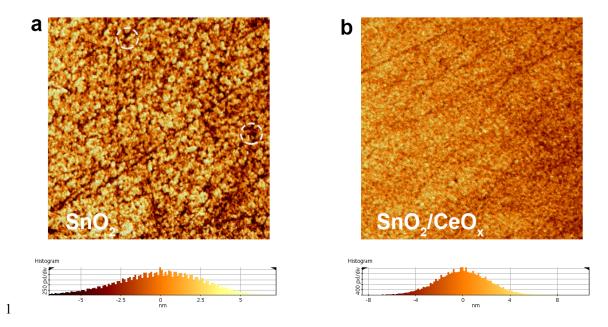



Figure S2. (a) TEM image and (b) size distribution of CeOx.

2 Figure S3. The top view AFM images and normal distribution chart of (a) SnO₂ and (b)

3 SnO₂/CeO_x films.

5

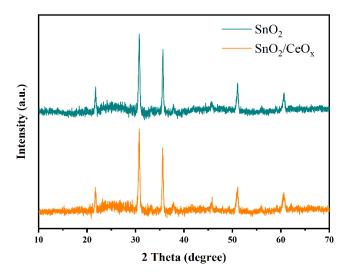
4

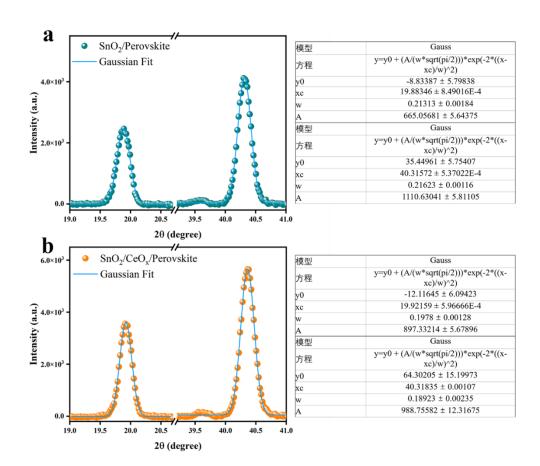
6

Figure S4. Optical image of the pristine SnO₂ and SnO₂/CeO_x films deposited on the

8 glass/ITO substrate.

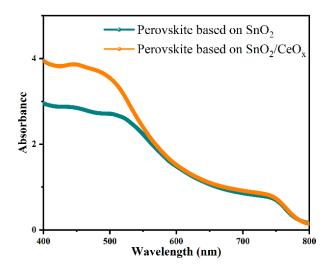
9



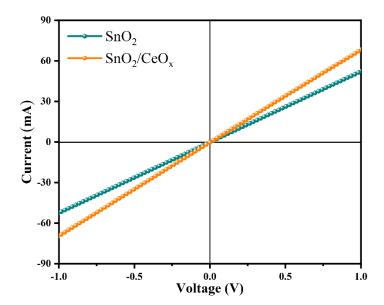

Figure S5. XRD patterns of SnO₂ and SnO₂/ CeO_x films.

1

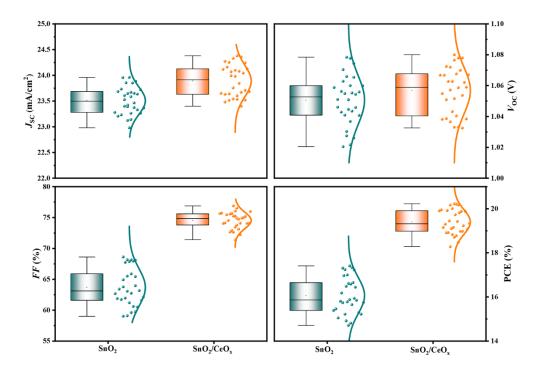
2


3

4


5 Figure S6. (a) The Gaussian fitting results of the perovskite film based on SnO₂; (b) The

6 Gaussian fitting results of the perovskite film based on SnO₂/CeO_x.



2 Figure S7. UV-Vis absorbance spectra for perovskite layers deposited on the SnO₂ and

SnO₂/CeO_x films.

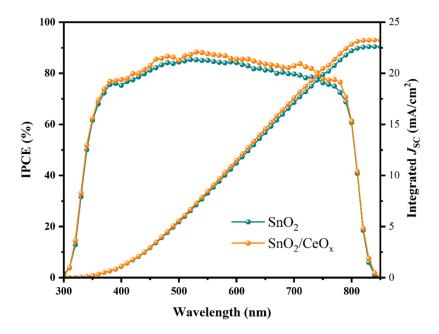


Figure S8. Dark J-V curves of the ITO/ETL/Ag structure.

Figure S9. Box plots of the J_{SC} , V_{OC} , FF, and PCE of PSC devices based on the SnO₂

3 and SnO₂/CeO_x ETLs.

Figure S10. IPCE spectra and integrated J_{SC} values of the devices with CeO_x interlayer 7 and the pristine one.

2 **Table S1**. The summarization of Ce 3d XPS data of CeO_x.

	Ce 3d								
u'''	u"	u'	u	u_0	v'''	V''	v'	v	\mathbf{v}_0
916.	907.	903.	900.	898.	898.	888.	885.	882.	880.
52 eV	35 eV	94 eV	93 eV	93 eV	21 eV	27 eV	38 eV	08 eV	12 eV

3

- 4 Table S2. The stoichiometric ratio of O/Ce from EDS mapping data corresponding to
- 5 Figure 2d.

Elements	ОК	Si K	Ce L	Total amount
Weight percentage	18.19	0.04	81.77	100.00
Atomic percentage	65.87	0.33	33.80	100.00

^{6 *}All analyzed elements have been normalized.

- 8 Table S3. The calculation results of the XRD FWHM of the perovskite layer on SnO₂
- 9 with and without CeO_x, corresponding to Figure 3f and S6.

Sample	2θ	17.0	r	A	w
Sample	y_0	У0	x_c	А	(angle)
SnO ₂ /perovskite	19.88°	-8.83387	19.88346	665.05681	0.21313
	40.32°	35.44961	40.31572	1110.63041	0.21623
SnO ₂ /CeO _x /perovs	19.92°	-12.11645	19.92159	897.33214	0.19780
kite	40.32°	64.30205	40.31835	988.75582	0.18923

Table S4. Calculated UPS parameters for SnO_2 and CeO_x films.

ETLs	$E_{\text{cut-off}}$ (eV)	$E_{ m onset}$ (eV)	E_F (eV)	VBM (eV)	$E_{\rm g}$ (eV)	CBM (eV)
SnO_2	16.55	3.70	4.67	8.37	4.02	4.35
CeO_x	17.02	3.40	4.20	7.60	3.50	4.10

Table S5. Fitting parameters of the TRPL curves.

Sample	A_1	τ_1 (ns)	A_2	τ_2 (ns)	$\tau_{\rm ave}({\rm ns})$
SnO_2	0.17571	46.76	0.74740	123.15	116.89
SnO ₂ /CeO _x	0.77539	2.66	0.75845	57.41	54.93

Table S6. Fitting parameters (R_s and R_{rec}) of PSCs based on different ETLs derived from

8 Figure 5c.

Sample	$R_{\mathrm{s}}\left(\Omega\right)$	$R_{ m rec}\left(\Omega ight)$
SnO_2	28.5	21305.2
SnO ₂ /CeO _x	21.4	22954.4

11 Table S7. The full photovoltaic parameters for fabricated PSCs corresponding to Figure

12 6a.

Device	$J_{\rm SC}$ (mA cm ⁻²)	$V_{\rm OC}\left({ m V}\right)$	FF (%)	PCE (%)
SnO_2	23.47 ± 0.49	1.05 ± 0.03	63.82 ± 4.80	16.06 ± 1.35
SnO ₂ /CeO _x	23.89 ± 0.49	1.06 ± 0.03	74.16 ± 2.76	19.26 ± 0.98

2 Table S8. Mean values and standard deviation (δ) for 30 devices with SnO₂ ETL and

3 SnO₂/CeO_x ETL.

Device		$J_{\rm SC}$ (mA cm ⁻²)	$V_{\mathrm{OC}}\left(\mathrm{V}\right)$	FF (%)	PCE (%)
SaO	Average	23.51	1.05	63.68	16.06
SnO_2	δ	± 0.26	± 0.016	± 3.04	± 0.83
9.070.0	Average	23.89	1.06	74.54	19.40
SnO ₂ /CeO _x	δ	± 0.31	± 0.015	± 1.33	± 0.56

45

6 Table S9. Photovoltaic parameters of the control devices and the best devices under

7 reverse (1.2 V \rightarrow –0.1 V) and forward (–0.1 V \rightarrow 1.2 V) scans.

Device		$J_{ m SC}$ (mA cm ⁻²)	V _{OC} (V)	FF (%)	<i>PCE</i> (%)	HI (%)
SnO_2	Reverse	23.95	1.06	68.6	17.41	12.00
SnO_2	Forward	23.78	1.04	61.2	15.13	13.09
S O /C O	Reverse	24.35	1.08	76.9	20.23	2.01
SnO ₂ /CeO _x	Forward	24.28	1.08	74.8	19.62	3.01