Supporting Information

(111) Facet-engineered SnO₂ as Electron Transport Layer for Efficient and Stable Perovskite Solar Cells

Keshav Kumar Sharma, Rohit, Sochannao Machinao, and Ramesh Karuppannan

Department of physics, Indian Institute of Science, Bangalore 560012, Karnataka, India Corresponding Author: <u>kramesh@iisc.ac.in</u>

Fig. S1 XRD pattern of SnO(OH)₂ powder^{1,2} extracted from SnO₂ precursor at 120 °C.

Fig. S2 I-V curves of the T-SnO₂ and C-SnO₂ thin films.

The optical band gap of the the T-SnO₂, C-SnO₂ and CsFAMA films are calculated using the UV-vis spectra fit to tauc equation³

$$(\alpha h\nu)^n = A(h\nu - E_g)$$

Where α is the absorption coefficient calculated as $\alpha = 2.303 \frac{A}{d} = -2.303 \frac{1}{d} \log \frac{1}{T}$, A is the absorbance, T is the transmittance and d is the thickness of the film. The optical band gap of the T-SnO₂, C-SnO₂ and CsFAMA films are calculated to 4.01, 4.10 and 1.61 eV, respectively (Fig. 2d & S2).

The valance band maximum (E_v) was determined by the following equation⁴

$$E_v = (E_{cutoff} - HOS) - hv$$

The E_{cutoff} and HOS (higheat occupied state) positions are indicated in Fig. 2e & S2. As expacted, the E_v values of the T-SnO₂, C-SnO₂ and CsFAMA films are calculated to be -8.10, -8.04 and -5.40 eV, respectively.

Fig. S3 UV-vis absorption spectrum and UPS spectrum of CsFAMA film.

Fig. S4 The 2d and 3d AFM images of (a) T-SnO₂ and (b) C-SnO₂ thin film on FTO coated glass substrate.

Fig. S5 PL spectrum of pristine CsFAMA film.

Fig. S6 TRPL spectrum of pristine CsFAMA film.

Table S1: The fitting parameters of TRPL spectra

Sample	A ₁	$\tau_1(ns)$	A ₂	τ ₂ (ns)	A ₃	τ3 (ns)	τ _{ave} (ns)
CsFAMA	0.57	4.70	0.42	41.42	-	-	36.53
T-SnO ₂ /CsFAMA	0.95	1.23	0.04	6.38	0.007	29.07	5.52
C-SnO ₂ /CsFAMA	0.79	0.63	0.04	3.79	0.005	17.49	3.28

The average lifetime was determined by the following equation⁵

$$< au_{ave}>=rac{\sum_{i=1,2,3}A_{i} au_{i}^{2}}{\sum_{i=1,2,3}A_{i} au_{i}}$$

where A_i is the pre-exponential factor and τ_i is the average lifetime.

Sample	VTFL (V)	Ntrap (cm ⁻³)			
T-SnO ₂	0.564	1.80×10^{16}			
C-SnO ₂	0.445	1.42×10^{16}			

Table S2: The parameters of the SCLC for different electron-only devices.

The density of trap states was calculated using the following equation⁶

$$N_{trap} = \frac{2\varepsilon_r \varepsilon_0 V_{TFL}}{eL^2}$$

where V_{TFL} is the trap filling limit voltage, L is the thickness of the perovskite layer, ε_r is the relative dielectric constant of the perovskite layer ($\varepsilon_r \approx 26$), ε_0 is the vacuum dielectric constant, and *e* is the amount of electric charge.

Fig, S7 (a) TSC profile of PSCs, and (b) Arrhenius plot obtained from the TSC profile with different ETLs in PSCs. Each dashed line represents the slope of the profile.

To understand the recombination process in the PSC with $C-SnO_2$ ETL, we conducted thermally stimulated current (TSC) analysis (see Fig. S7a). The activation energy of the trap states was calculated from the slope of the Arrhenius plot (see Fig. S7b) of the TSC profile, using the following relation⁷

$$I_{\rm TSC} \propto \exp\left(-\frac{E_{\rm A}}{k_{\rm B}T}\right)$$

where E_A , k_B , and T are the activation energy, Boltzmann constant, and temperature, respectively.

T- SnO ₂	V _{oc} (V)	J _{SC} (mA.cm ⁻²)	FF (%)	РСЕ (%)	C- SnO ₂	V _{oc} (V)	J _{SC} (mA.cm ⁻²)	FF (%)	РСЕ (%)
1	1.08	23.67	76.5	19.64	1	1.10	23.89	77.3	20.34
2	1.08	23.53	76.3	19.38	2	1.10	23.76	76.9	20.09
3	1.07	23.87	75.8	19.36	3	1.10	23.89	75.3	19.78
4	1.09	23.69	74.1	19.13	4	1.11	23.54	75.6	19.75
5	1.08	23.45	74.3	18.81	5	1.10	23.48	76.3	19.70
6	1.07	23.58	73.8	18.62	6	1.10	23.64	75.1	19.53
7	1.08	23.33	72.9	18.55	7	1.10	23.67	74.9	19.50
8	1.07	23.68	73.2	18.54	8	1.09	23.93	74.7	19.48
9	1.08	23.33	73.1	18.42	9	1.10	23.83	74.3	19.47
10	1.06	23.59	73.3	18.33	10	1.11	23.06	75.5	19.32
11	1.07	23.47	72.6	18.24	11	1.11	23.23	74.8	19.29
12	1.06	23.77	72.3	18.22	12	1.10	23.63	74.2	19.28
13	1.06	23.46	72.5	18.03	13	1.11	23.14	74.8	19.21
14	1.07	23.11	72.1	17.83	14	1.09	23.67	74.0	19.06
15	1.06	23.34	71.6	17.72	15	1.10	23.46	73.6	18.99
16	1.05	23.53	71.5	17.66	16	1.09	23.46	73.3	18.74
17	1.07	23.48	70.3	17.67	17	1.08	23.54	73.5	18.68
18	1.06	23.41	70.7	17.55	18	1.10	23.14	73.1	18.61
19	1.06	23.64	69.5	17.42	19	1.11	23.06	72.6	18.58
20	1.08	23.45	68.5	17.35	20	1.09	23.34	72.9	18.54
21	1.07	23.61	68.4	17.28	21	1.09	23.27	72.8	18.46
22	1.07	23.27	69.1	17.21	22	1.08	23.45	72.6	18.38
23	1.06	23.64	66.9	16.76	23	1.11	22.86	72.3	18.34

Table S3: J-V data of 30 independent devices.

24	1.05	24.34	64.7	16.54	24	1.10	23.56	70.3	18.21
25	1.06	23.71	67.1	16.87	25	1.09	23.85	69.1	17.96
26	1.06	23.49	66.1	16.46	26	1.10	23.66	68.3	17.76
27	1.06	23.12	66.3	16.24	27	1.09	24.14	66.2	17.42
28	1.08	22.76	64.2	15.78	28	1.10	23.87	65.4	17.18
29	1.05	23.22	64.6	15.75	29	1.10	23.36	65.8	16.90
30	1.05	23.05	63.6	15.39	30	1.08	23.06	65.3	16.26

References

- 1 S. Khalameida, M. Samsonenko, J. Skubiszewska-Zięba and O. Zakutevskyy, *Adsorpt. Sci. Technol.*, 2017, **35**, 853–865.
- 2 C. Akyil, G. Akdas, P. Afsin and M. Ürgen, *Mater. Chem. Phys.*, 2019, 221, 263–271.
- 3 K. Kranthiraja, M. Parashar, R. K. Mehta, S. Aryal, M. Temsal and A. B. Kaul, *Sci. Rep.*, 2022, **12**, 18574.
- 4 X. Wu, Y. Jiang, C. Chen, J. Guo, X. Kong, Y. Feng, S. Wu, X. Gao, X. Lu, Q. Wang, G. Zhou, Y. Chen, J. Liu, K. Kempa and J. Gao, *Adv. Funct. Mater.*, , DOI:10.1002/adfm.201908613.
- 5 X. Hao, Y. Fan, W. Deng and Z. Jin, *Carbon N. Y.*, 2024, **218**, 118752.
- 6 Q. Geng, S. Zhang, H. Sui, X. Liu, Y. Li, H. Zhong, C. Yao, Q. Zhang and X. Chu, *ACS Appl. Mater. Interfaces*, 2024, **16**, 38124–38133.
- 7 D. Koo, Y. Choi, U. Kim, J. Kim, J. Seo, E. Son, H. Min, J. Kang and H. Park, *Nat. Nanotechnol.*, DOI:10.1038/s41565-024-01799-8.