Electronic supplementary information

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Ammonia synthesis from water and nitrogen using electricity with hydrogen-permeable membrane electrochemical cell with Ru catalysts and molten hydroxide electrolyte: Integration with ammonia separation and unreacted gas recirculation.

Raisei Sagara,^a Eriko Watanabe,^a Jun Kubota*^a

1. Vapor pressure of NH₃ in NH₃ separation system

The vapor pressure of NH_3 is the essential thermodynamic parameter for the gas/liquid separator. In the gas/liquid separator, the vapor pressure of NH_3 exists in the gas phase and the remaining portion of the NH_3 is liquefied. The vapor pressure curve of NH_3 is plotted in Fig. S1, where the individual data are obtained from NIST Chemistry Webbook.¹ In this study, the gas/liquid separator was kept at -75°C and NH_3 at 7 kPa remains in the gas phase.

2. Dissolution equilibrium of H₂O in NaOH-KOH

The electrolyte used in this study is a NaOH-KOH eutectic molten salt (1:1 molar ratio) in contact with humidified Ar. Since the melting point of the NaOH-KOH eutectic molten salt is 171°C, it remains in a liquid state under the experimental condition of 250°C. When this molten salt is exposed to a certain partial pressure of water vapor, it reaches a gas-liquid dissolution equilibrium. According to a literature on solubility, the dissolution equilibrium can be described by the following

Fig. S1. Vapor pressure of NH₃ against temperature.

equation, with the Henry's law constant (k) being 0.0095 atm mol⁻¹ kg at 250°C.²⁻⁴

 $P_{\rm H2O} = k N_{\rm H2O}$

^{a.} Department of Chemical Engineering, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan. E-mail: jkubota@fukuoka-u.ac.jp (Jun Kubota)

Article

Where P_{H2O} and N_{H2O} are partial pressure of H₂O in atm and amount of H₂O dissolved in melt in mol kg⁻¹. By plotting the amount (kg) of dissolved water against the amount (kg) of the NaOH-KOH eutectic molten salt as a function of the partial pressure of H₂O vapor and, Fig. S2 is obtained. In this study, the concentration of H₂O in Ar+H₂O is 38 vol%. From this graph, it is possible to determine how much water the NaOH-KOH eutectic molten salt contains under operating pressure condition. It should be noted that the data in the literature is for NaOH-KOH melt (63.1:36.9 mol%), so that the ratio of NaOH-KOH is not exactly same.

References

- National Institute of Standards and Technology (NIST), U.S. Department of Commerce, NIST Standard Reference Database Number 69, DOI: https://doi.org/10.18434/T4D303 https://webbook.nist.gov/chemistry/
- E. Al-Muslih, P. J. Iredale, J. K. Maund, J. Chem. Eng. Data, 1983, 28, 245–246.
- Solubility Data Series, Gases in Molten Salts, ed. J. W. Lorimer, International Union of Pure and Applied Chemistry (IUPAC), Pergamon Press, 1989, vol. 45/46.
- H.W.Otto, R. P. Seward, J. Chem. Eng. Data, 1964, 9, 507– 508.

Fig. S2. Amount of H_2O dissolved in NaOH-KOH melt as a function of H_2O vapor pressure.