Supplementary Information (SI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2025

Electronic Supplemental Information

Single-step solution plasma synthesis of bifunctional CoSn(OH)₆-carbon composite electrocatalysts for oxygen evolution and oxygen reduction reactions

Sangwoo Chae¹, Akihito Shio², Taketo Imamura², Kouki Yamamoto², Yuna Fujiwara², Gasidit Panomsuwan³, Takahiro Ishizaki^{4*}

¹SIT Research Laboratories, Shibaura Institute of Technology, Tokyo 135-8548, Japan

(Present address: Institutes of Innovation for Future Society Designated, Nagoya University, Japan)

²Materials Science and Engineering, Graduate School of Engineering and Science, Shibaura Institute of Technology, Toyosu, Koto-Ku, Tokyo, 135-8548, Japan

³Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand

⁴College of Engineering, Shibaura Institute of Technology, Tokyo 135-8548, Japan

*Corresponding author: ishizaki@shibaura-it.ac.jp

XRD patterns of the composite materials synthesized by coprecipitation method

Figure S1. XRD patterns of (a) CSO_CNT_ pH 12 (co), (b) CSO_G_ pH 12 (co), and (c) CSO_KB_ pH 12 (co).

FE-SEM images

Figure S2. FE-SEM images of (a) CSO_pH10 , (b) CSO_pH12.

Figure S3. FE-SEM images of (a) CSO_CNT_ pH 12 (co), (b) CSO_G_ pH 12 (co), and (c) CSO_KB_ pH 12 (co).

TEM images

Figure S4. TEM images of (a) CSO_pH10 $\,$, (b) CSO_ pH12

STEM and EDS measurements

Figure S5 STEM image of the CSO_CNT_pH10, (a) EDS mapping images of CSO_CNT_pH10 in (b-f) confirming the presence of Co, Sn, C, O and W.

Figure S6 image of the CSO_G_pH10, (a) EDS mapping images of CSO_G_pH10 in (b-f) confirming the presence of Co, Sn, C, O and W.

Figure S7 image of the CSO_KB_pH10, (a) EDS mapping images of CSO_KB_pH10 in (b-f) confirming the presence of Co, Sn, C, O and W.

Figure S8 STEM image of the CSO_CNT_pH12, (a) EDS mapping images of CSO_CNT_pH12 in (b-f) confirming the presence of Co, Sn, C, O and W.

Figure S9 STEM image of the CSO_G_12, (a) EDS mapping images of CSO_G_12 in (b-f) confirming the presence of Co, Sn, C, O and W.

Figure S10 STEM image of the CSO_KB_12, (a) EDS mapping images of CSO_KB_12 in (bf) confirming the presence of Co, Sn, C, O and W.

XPS measurements

Figure S11. XPS wide spectra of the samples synthesized by SP: (a) CSO_CNT_pH10, (b) CSO_G_pH10, (c) CSO_KB_pH10, (d) CSO_CNT_pH12, (e) CSO_G_pH12, and (f) CSO_CNT_pH12.

Figure S12. High-resolution XPS Co 2*p* spectra of the samples synthesized by SP: (a) CSO_CNT_pH10, (b) CSO_G_pH10, (c) CSO_KB_pH10, (d) CSO_CNT_pH12, (e) CSO_G_pH12, and (f) CSO_CNT_pH12.

Figure S13. High-resolution XPS Sn 3*d* spectra of the samples synthesized by SP: (a) CSO_CNT_pH10, (b) CSO_G_pH10, (c) CSO_KB_pH10, (d) CSO_CNT_pH12, (e) CSO_G_pH12, and (f) CSO_CNT_pH12.

Figure S14. High-resolution XPS O 1*S* spectra of the samples synthesized by SP: (a) CSO_CNT_pH10, (b) CSO_G_pH10, (c) CSO_KB_pH10, (d) CSO_CNT_pH12, (e) CSO_G_pH12, and (f) CSO_CNT_pH12.

Figure S15. Electrochemical evaluations of the samples synthesized at (a) pH = 10 and (b) pH = 12. CV curves in N₂ and O₂-saturated 1 M KOH solutions at a scan rate of 50 mV/s (N₂: dashed line, O₂: solid line).

Figure S16. LSV curves using an RRDE electrode in an O₂-saturated 1 M KOH solution at a scan rate of 10 mV/s. The rotation speed was 1600 rpm; (a) CSO_CNT_ pH 12 (co), (b) CSO_G_ pH 12 (co), and (c) CSO_KB_ pH 12 (co).

Figure S17. LSV curves of the composite samples synthesized by coprecipitation method at pH = 12: (a) CSO_CNT_pH 12 (co), (b) CSO_G_pH 12 (co), and (c) CSO_KB_pH 12 (co).

Figure S18. High-resolution XPS of (a) Co 2*p*, (b) Sn 3*d*, and (c) O 1*s* spectra for CSO_KB_pH12 before and after the CA measurement.

Figure S19. XRD patterns of CSO_KB_pH12 (a) before and (b) after the CA measurement.

Figure S20. N_2 adsorption isotherm curves of (a) CSO_pH10 , (b) CSO_pH12 , (c) CSO_KB_pH10 , (d) CSO_KB_pH12 , (e) CSO_ CNT_pH10 , (f) CSO_CNT_ pH12 , (g) CSO_G_pH10 , and (h) CSO_G_pH12.

Solution plasma conditions

Sample	CSO _pH10	CSO_C NT_pH1 0	CSO_G _pH10	CSO_K B_pH10	CSO _pH12	CSO_C NT_pH1 2	CSO_G _pH12	CSO_K B_pH12
Applied voltage	1.2 kV							
frequenc y	50 kHz							
pulse width	0.8 µsec							
Distance between electrode s	0.5 mm							
Discharg e time	20 min							
Solution pH	10			12				
Carbon mixture amount	-	CNT 25 mg	G 25 mg	KB 25 mg	-	CNT 25 mg	G 25 mg	KB 25 mg
Electrode		W (Diameter: 1.0 mm)						

Table S1 SPP Conditions (CSO)

Table S2 Quantitative analysis results of each sample (at.%)

Sample	Со	Sn	0	W
CSO_CNT_pH10	26.25	27.29	46.46	-
CSO_G_pH10	31.80	30.90	37.23	0.07
CSO_KB_pH10	32.80	32.28	34.92	0.01
CSO_CNT_pH12	29.14	21.92	48.91	0.04
CSO_G_pH12	32.71	21,18	46.11	-
CSO_KB_pH12	29.40	27.63	42.96	-

Sample	Onset Potential	Current density at 0.464 V vs. RHE	Electron transfer numbers at 0.464	Hydrogen peroxide
1	[V vs. RHE]	[mA/cm ²]	V vs. RHE	yields [%]
CSO_pH10	0.766	-3.47	3.67	16.54
CSO_CNT_pH10	0.794	-5.31	3.76	11.84
CSO_G_pH10	0.807	-4.49	3.47	26.51
CSO_KB_pH10	0.843	-5.58	3.17	41.64
CSO_pH12	0.743	-4.00	3.60	19.82
CSO_CNT_pH12	0.834	-5.56	3.71	14.47
CSO_G_pH12	0.769	-4.60	3.47	26.66
CSO_KB_pH12	0.915	-6.96	3.92	4.55
CSO_CNT_pH12(co)	0.728	-1.71	2.43	80.41
CSO_G_pH12(co)	0.718	-1.34	2.62	70.72
CSO_KB_pH12(co)	0.757	-2.58	2.64	69.70
20 wt.% Pt/C	0.960	-5.57	3.71	14.40

Table S3. ORR catalyst performance of each sample

Table S4. OER catalyst performance of each sample

Sample	Onset Potential [V vs. RHE]	Potentials at reaching 10 mA/cm ² [V vs. RHE]	Overpotentials at 10 mA/cm ² [V vs. RHE]	Tafel Slope [mV/dec.]
CSO_pH10	1.526	1.625	0.395	83
CSO_CNT_pH10	1.508	1.592	0.362	77
CSO_G_pH10	1.491	1.601	0.381	101
CSO_KB_pH10	1.341	1.575	0.345	126
CSO_pH12	1.498	1.582	0.352	78
CSO_CNT_pH12	1.446	1.580	0.350	110
CSO_G_pH12	1.418	1.577	0.347	108
CSO_KB_pH12	1.322	1.548	0.318	144
CSO_CNT_pH12(co)	1.546	1.733	0.503	168
CSO_G_pH12(co)	1.536	1.683	0.453	193
CSO_KB_pH12(co)	1.461	1.635	0.405	165
RuO ₂	1.470	1.659	0.429	162

Sample name	Specific surface area [m ² /g]		
CSO_pH10	248.17		
CSO_CNT_pH10	229.56		
CSO_G_pH10	212.43		
CSO_KB_pH10	298.77		
CSO_pH12	146.20		
CSO_CNT_pH12	203.20		
CSO_G_pH12	208.62		
CSO_KB_pH12	169.88		

Table S5. BET specific surface area measurement results for each sample

Calculation methods

Electrochemically active surface areas (ECSA) for each system were estimated from the catalytic surface's electrochemical double-layer capacitance (C_{dl}). CV method was used to measure the electrochemical C_{dl} . The potential was swept at different scan rates of 20, 50, 100, 200, 400, 600, 800, and 1000 mV s⁻¹, where no faradic current was observed. (Figure 7a and d). Then the C_{dl} was estimated by plotting the $\Delta J = (J_a - J_c)$ at 1.27 V vs RHE as a function of the scan rate (Figure 7c).^{1,2}

The C_{dl} can be calculated using the following equation: $C_{dl} = d(\Delta j) / 2dV_b$

The ECSA can be calculated using C_{dl} , as follows: $ECSA = C_{dl} / C_s$

For the estimation of ECSA, a specific capacitance (C_s) value $C_s = 0.040$ mF cm⁻² in 1 M KOH.^{1,2}

Notes and references

1. S.W. Chae, A. Shio, T. Kishida, K. Furutono, Y. Kojima, G. Panomsuwan, T. Ishizaki, Materials, 2024, 17, 2963.

2. C. C. McCrory, S. Jung, J. C. Peters and T. F. Jaramillo, J. Am. Chem. Soc., 2013, 135, 16977-16987.

3. S. Karak, K. Koner, A. Karmakar, S. Mohata, Y. Nishiyama, N. T. Duong, N. Thomas, T.

G. Ajithkumar, M. S. Hossain and S. Bandyopadhyay, Adv. Mater., 2023, 2209919.