Supporting Information

Establishing redox flow batteries with polyoxometalates-based

redox couples for enhanced hydrogen sulfide splitting

Zihang Yu^a, Weiguang Ma^a*, Enqing Xue^a, Yuening Ma^b, Yichen Zhang^a,

Haofu, Yuan^b, Yupeng Xiao^a, Hefeng Zhang^a, Xu Zong^a*

a. Marine Engineering College, Dalian Maritime University

Dalian 116026, P. R. China

E-mail: wgma@dlmu.edu.cn, xuzong@dlmu.edn.cn;

b. College of Transportation of Engineering, Dalian Maritime University
Dalian 116026, P. R. China

Supplementary Results

Fig. S1. CV plots of commercial glassy carbon electrode in 0.5 M H_2SO_4 containing 0.05 M $H_3(PMo_{12}^{VI}O_{40})$ at different scanning rates.

Fig. S2. CV plots of commercial glassy carbon electrode in 0.5 M H_2SO_4 containing 0.05 M $H_4[SiW_{12}{}^{VI}O_{40}]$ at different scanning rates.

Fig. S3 (a) The anodic peak current density (j_p) of process II versus square root of scan rate $(V^{1/2})$ plot obtained on a commerical carbon glassy electrode for $H_4[SiW_{12}^{VI}O_{40}]/H_5[SiW_{11}^{VI}W^VO_{40}]$ redox couples in electrolytes of 0.5 M H₂SO₄.

Fig. S4 The corresponding plot of Ψ versus V^{-1/2} for $H_4[SiW_{12}^{VI}O_{40}]/H_5[SiW_{11}^{VI}W^VO_{40}]$ redox couples.

Fig. S5 d) CV plots of a commerical carbon glassy electrode in 0.5 M H_2SO_4 containing 0.05 M $H_4[SiW_{12}^{VI}O_{40}]$ before and after 100 CV tests.