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1 Choice of parameters for the simulations

All of the input parameters are listed below. The input parameters obtained from literature are
color coded with orange, and those obtained via experimental measurements are color coded with
green. The input parameters are generally separated into seven categories: 1) general (includes
temperature; thickness of the simulated stack; VBM, CBM, and Nc of the perovskite); 2) electron
and hole mobilities in the perovskite; 3) contacts (their work functions and surface recombination of
the electrons and holes at the electrodes); 4) transport layers (thickness, density of states, doping,
interface transfer velocity, VBM, and CBM); 5) Ions; 6) generation rates of electron-hole pairs;
and 7) trapping (bulk and surface traps, and if needed, grain boundaries). The e�ect of the grain
boundaries was disabled (set to 0).

Notice that most of the parameters were not altered as the cells were aged, except for the gen-
eration rate, the trap densities (bulk and interface) and up to an extent, the mobilities (mostly for
�ne-tuning of the FF and only for the samples with NiOx(+SAM)).
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Figure 1: All of the input parameters used in the simulations. The literature values were retrieved
from [1�6].

Elaboration on how the values for C60 are adjusted: The electronic changes caused by the HTL
continue to impact the rest of the device and they do not end at the HTL or the perovskite bulk.
Thus, while the VBM and the CBM of the C60 are not per se calculated or measured, they are �ne
tuned in line with the values for the VBM and CBM of the HTL + perovskie con�guration. As a
starting point, for the VBM of the C60 we use 6.0 eV, in line with literature.

The VBM of the perovskite with NiOx:Cu was measured to be 5.5 eV and the VBM of the per-
ovskite with NiOx:Cu and NiOx + SAM were measured to be 5.8 and 5.9 eV, respectively. So, the
di�erence / shift in the band alignment with moving from NiOx:Cu to NiOx:Cu + SAM and NiOx

+ SAM is 0.3 and 0.4 eV, respectively.

Then, we set the VBM of C60 at 6.0 eV for all of these three cells as a starting point. The best �t
was obtained for the cells with NiOx:Cu (slightly �ne tuned to 6.04 eV). Then the VBM of the C60

for the cells with NiOx:Cu + SAM and NiOx + SAM was raised by 0.3 and 0.4 eV, respectively -
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up to 6.3 eV (NiOx:Cu + SAM) and 6.41 eV (NiOx + SAM) - both of which led to a good �t. The
CBM is calculated by using a Eg of 2 eV.

The cells with NiOx were an exception to this logic though. As the VBM of the perovskite with
NiOx (6.1 eV) is 0.6 eV higher than the VBM of the perovskite with NiOx:Cu (5.5 eV), one would
expect a 0.6 eV shift in the VBM of the C60 as well (6.6 eV). However, this did not lead to a good
�t of the JV curve, so the VBM was gradually decreased, until the value converged at 6.36 eV. This
indicates that the sub-optimal band alignment at the NiOx-perovskite interface, a�ects the band
alignment at the ETL-perovskite interface as well.

The doping and the mobility in the HTL were obtained from Hall measurements for NiOx(:Cu)
and it was assumed that passivating the NiOx(:Cu) surface with SAM does not change the doping
in the bulk of the NiOx(:Cu) (Figure 2).
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Figure 2: Hall measurements for the concentration of holes in NiOx and NiOx:Cu. The extracted
values for the simulations are written in Table 1 above.
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2 JV Curves: Aging Experiments and Varying Scan Speeds

HTL: NiOx

HTL: NiOx:Cu

HTL: NiOx + MeO-2PACz
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Figure 3: The JV curves of the champion devices per HTL with respect to stability. The simulated
JV curves in Figure 1 in the paper are taken at aging times of 0 hours (fresh) and at 336 hours
(14-days aged cells). The electrical contact to the cells was lost on the seventh and eighth day (144
and 168 hours), causing an artifact in the JV curves. The measurements continued upon �xing this
issue.
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Figure 4: One averaged JV curve per scan rate from the six pixels on a given sample for each
HTL: NiOx, NiOx:Cu, NiOx + SAM, NiOx:Cu + SAM. The hysteresis factors presented in Figure
7 in the paper were obtained from these JV curves.
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3 Traps' densities and rates of recombination

NiOx NiOx:Cu NiOx + SAM NiOx:Cu + SAM

Fresh Aged Fresh Aged Fresh Aged Fresh Aged

TrapsHTL−pero 4.0 1.2 7.0 6.5 3.0 2.0 8.0 12.0
×1013 m−2

TrapsBulk 0.9 32.1 1.1 3.0 3.0 3.0 1.1 9.0
×1020 m−3

Rdir 0.07 0.19 6.99 6.84 3.46 0.08 7.83 3.37
×1023 m−3/s

RBulk−SRH 0.01 0.03 3.17 8.46 9.21 0.06 2.34 5.23
×1025 m−3/s

RInt−SRH−n 198.25 206.54 3.18 2.89 1.48 130.17 1.46 1.09
×1028 m−3/s

RInt−SRH−p 0.002 0.001 0.26 0.24 0.01 0.01 × 10−2 0.24 0.18
×1028 m−3/s

Table 1: Holes trap density at the HTL-perovskite interface (TrapsHTL−pero) and in the perovskite
bulk (TrapsBulk) followed by varying rates of recombination at Voc for fresh and aged single-junction
perovskite solar cells with NiOx(:Cu)(+SAM) HTLs and C60-SnO2 as an ETL stack. Rdir: direct re-
combination; RBulk−SRH : recombination via bulk traps; RInt−SRH−n or RInt−SRH−p: recombination
via interface traps, where n and p distinguish between trapping of electrons and holes, respectively.

4 UPS Measurements

The work function (WF, see Figure 6a) is determined via

WF = hν − ESEE − EF , (1)

where hν is the excitation energy (21.2 eV), ESEE is the binding-energy point where the linear
extrapolation of the secondary electron edge (SEE) intercepts the background, and EF is the shift
away from 0 eV of the Fermi level of a clean gold (Au) sample contacted to both the sample and
the manipulator in the analytic chamber. This calibration gives us 1.19 eV shift for the Fermi level
of the gold (Figure 6b).

The VBM is determined by a linear extrapolation of the leading edge of the UPS spectrum un-
til the line intercepts the pre-determined background. The error ascribed to the UPS measurements
is obtained by averaging the two most extreme linear �ts for the dominant linear slope and reported
as the deviation between the minimum and the maximum value from this average value.
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Figure 5: a) Work function (WF) of the triple-cation perovskite �lms deposited and then measured
on top of an ITO + HTL + perovskite partial-cell stack. The extracted value is the average of
the two values denoted on the plot. The HTLs are NiOx (blue), NiOx:Cu (orange), NiOx + SAM
(magenta), and NiOx:Cu + SAM (black). The SAM is MeO-2PACz. b) Calibration with a clean
gold sample to �nd its Fermi-level shift.
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Figure 6: Valence band maxima (VBM) of the triple-cation perovskite �lms deposited and then
measured on top of an ITO + HTL + perovskite partial-cell stack. The HTLs are NiOx (blue),
NiOx:Cu (orange), NiOx + SAM (magenta), and NiOx:Cu + SAM (black). The SAM is MeO-
2PACz.
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