Supporting Information

Facile approach to deposit high performance electrocatalyst high entropy oxide coatings using a novel plasma spray route for efficient water splitting

in alkaline medium

Amarnath Pasupathi,¹ Praveen Kandasamy,^{2,3} Ranjith Kumar Dharman,⁴ Sivakumar Govindarajan,² Tae Hwan Oh,⁴ Min Wook Lee,³ and Yugeswaran Subramaniam ^{1*}

¹Applied Thermal Plasma Laboratory, Department of Physics, Pondicherry University, Puducherry 605014, India.

²Centre for Engineered Coatings, International Advanced Research Centre for Powder Metallurgy and New Materials, Balapur, Hyderabad 500 005, Telangana, India.

³Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Chudong-ro, Bongdong-eup, Jeonbuk 55324, Republic of Korea.

⁴School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, South Korea.

*Corresponding author's email: <u>yugeswaran@pondiuni.ac.in</u>

This file contains 13 pages in which the information on CV, Cdl, comparison tables, Post studies, references are given respectively.

Number of Figure: 6 (S1-S6) Number of Table: 2 (S1-S2)

Figures & tables	Subject of the Figure	Page number
S1	CVs at different scan rates in the non-faradaic area to determine the C_{dl} values of HEO-A1 and HEO-A2, respectively	5
S2	Calculated C _{dl} values of HEO-A1 and HEO-A2	6
S3	(a) TOF and (b) ESCA normalized LSV curve of HEO-A1, and HEO-A2	7
S4	XRD pattern of HEO-A1 coating after stability test	8
S5	XPS spectra of HEO A1 coating after electrochemical performance analysis: (a) Co 2p, (b) Fe 2p, (c) Mn 2p, (d) Ni 2p, (e) Cu 2p, and (f) O 1s	9
S6	Surface morphology of HEO-A1 coating after electrochemical performance analysis	10
Table S1	Comparison of high entropy oxides (HEOs) based electrocatalyst for OER application in 1 M KOH electrolyte solution	11
Table S2	Comparison of high entropy oxides (HEOs) based electrocatalyst for HER application in 1 M KOH electrolyte solution	12
	References	13

Electrochemical characterization

All the potential data were converted into an RHE scale according to the following equation:

$$E_{RHE} = E_{ref} + 0.098 + 0.059 pH....equation 1$$

Overpotential

The overpotential values of all the catalysts were calculated at a benchmarking current density of 10 mA cm^{-2} by employing the following relation:

 $\eta_{10}(\text{OER}) = (E_{\text{obs}}-1.23)$ V versus RHE.....equation 2

 η_{10} (HER)=(0-E_{obs}) V versus RHE.....equation 3

The Tafel Slope

The Tafel slope was calculated by fitting the overpotential versus log (j) using the Tafel equation as given below:

 $\eta=b \times \log (j/j_o)$ equation 4

where "*b*" signifies the Tafel slope value, "*j*" implies the current density value, and "*j*₀" is the exchange current density. Electrochemical impedance spectroscopy (EIS) measurements were done on the frequency ranges from 100 Hz to 0.1 Hz with an amplitude of 5 mV in 1 M KOH solution. The long-term durability study was performed using chronopotentiometry measurement.

Electrochemical Active Surface Area (ECSA)

The electrochemical active surface areas (ECSA) were measured by determining the electrochemical C_{dl} using the following equations:

 $i_c = v \times C_{dl}$equation 5 ECSA= C_{dl}/C_sequation 6 where " i_c " indicates the double-layer charging current resulting from scan-rates (v) dependent CVs at non-faradic potential, and " C_s " denotes a specific capacitance value of 0.040 mF cm⁻² for flat electrodes.

Turnover Frequency (TOF)

The amount of oxygen/hydrogen that is evolved per unit of time is known as the TOF. The TOF of the catalyst can be determined by the below expression,

$$TOF = \frac{j \times N_A}{n \times F \times \tau} \dots \text{equation } 7$$

where, j = current density, N_A = Avogadro number, F = Faraday constant (96 485 C mol⁻¹), n

= Number of electrons (For OER, n = 4 and HER, n = 2), Γ = Surface concentration.

Figure S1. (a and b) CVs at different scan rates in the non-faradaic area to determine the C_{dl} values of HEO-A1 and HEO-A2, respectively.

Figure S2. (a and b) Calculated C_{dl} values of HEO-A1 and HEO-A2.

Figure. S4 (a) TOF and (b) ESCA normalized LSV curve of HEO-A1, and HEO-A2.

Figure. S4 XRD pattern of HEO-A1 coating after stability test.

Figure. S5 XPS spectra of HEO A1 coating after electrochemical performance analysis: (a) Co 2p, (b) Fe 2p, (c) Mn 2p, (d) Ni 2p, (e) Cu 2p, and (f) O 1s.

Figure. S6 Surface morphology of HEO-A1 coating after electrochemical performance analysis.

S. No	Electrocatalyst	Overpotential (mV)	Tafel slope (mV/dec)	Current density	Reference
----------	-----------------	-----------------------	-------------------------	--------------------	-----------

				(mA cm ⁻²)	
1	(Fe, Co, Ni, Mn, B)O _x	266	64.5	10	1
2	(Ir, Ru, Cr, Fe, Co, Ni)O _x	190	51.1	10	2
3	(Fe, Ni, Co, Cr, Mn) ₂ O ₃	174	68	10	3
4	La(Cr. Mn. Fe. Co Ni)O ₃	325	51.2	10	4
5	(Li, Fe, Co, Ni, Cu, Zn)O	347	79.4	10	5
6	$(Co. Ni. Mn. Zn. Fe)_2O_2 \gamma$	336	47.5	10	6
7	$(Mg, Fe, Co, Ni, Cu)_2O_4$	300	40	10	7
8	$(\text{Fe Co Ni Cr Mn})_{3}O_{4}$	288	60	10	8
0	(Mn Fe Co Ni 7n)	330	36.7	10	9
10	$(Mn, Fc, Cb, Ni, Zh)_{3}O_{4}$	202	16.5	10	10
10	$(\text{WIII, Fe, NI, Wig, CF})_3O_4$	293	40.3	10	
11	(Co, Fe, Ni, Cr, Mn) ₃ O ₄	309	48.5	10	11
12	(Co, Cr, Fe, Mn, Ni) ₃ O ₄	220	100	10	12
13	(Cr, Mn, Fe, Ni, Zn) ₃ O ₄	295	53.7	10	13
14	(Co, Ni, Zn, Fe, Mn) ₃ O ₄	265	83.7	10	14
15	(Ni, Fe, Mn, Cu, Zn) ₃ O ₄	308	54	50	15
16	(Ni, Co, Cr, Mn, V) ₃ O ₄	247	54	50	16
17	(Ni, Co, Cr, Mn, Mo) ₃ O ₄	246	38	50	17
18	(Ni, Fe, Co, Cu, Mn) ₃ O ₄	220	46	10	This work

Table S1. Comparison of high entropy oxides (HEOs) based electrocatalyst for OERapplication in 1 M KOH electrolyte solution.

S. No	Electrocatalyst	Overpotential (mV)	Tafel slope (mV/dec)	Current density (mA cm ⁻²)	Reference
1	(Fe, Ni, Co, Cr, Mn) ₂ O ₃	60	80	10	3

2	(Li, Fe, Co, Ni, Cu, Zn)O	207	79.4	10	5
3	(Fe, Ni, Co, Mn, V) ₃ O ₄	81	88	10	18
4	(Fe, Co, Ni, Cu, Zn) ₃ O ₄	67	77	10	19
5	(Ni, Co, Cr, Mn, V) ₃ O ₄	217	92	50	16
6	(Ni, Co, Cr, Mn, Mo) ₃ O ₄	197	93	50	17
7	(Ni, Fe, Co, Cu, Mn) ₃ O ₄	129	43	10	This work

Table S2. Comparison of high entropy oxides (HEOs) based electrocatalyst for HER

 application in 1 M KOH electrolyte solution.

References

- 1 S. Jiang, K. Tian, X. Li, C. Q. Duan, D. Wang, Z. Wang, H. Sun, R. Zheng and Y. Liu, *J. Colloid Interface Sci.*, 2022, 606, 635–644.
- 2 W. Rong, Y. Chen, R. Dang, K. Huang, J. Xia, B. Zhang, J. Liu, H. Meng, Q. Cao and

J. Wu, J. Alloys Compd., 2024, 971, 172786.

- 3 S. Liao, T. Huang, W. Wu, T. Yang, Q. Hou, S. Sang, K. Liu, Y. Yang and H. Liu, *Chem. Eng. J.*, 2023, **471**, 144506.
- 4 T. X. Nguyen, Y. C. Liao, C. C. Lin, Y. H. Su and J. M. Ting, *Adv. Funct. Mater.*, 2021, **31**, 1–10.
- 5 Y. Gu, A. Bao, X. Wang, Y. Chen, L. Dong, X. Liu, H. Pan, Y. Li and X. Qi, *Nanoscale*, 2022, **14**, 515–524.
- 6 Y. Zhang, W. Dai, P. Zhang, T. Lu and Y. Pan, J. Alloys Compd., 2021, 868, 159064.
- 7 T. X. Nguyen, Z. T. Huang and J. M. Ting, *Appl. Surf. Sci.*, 2021, **570**, 151160.
- 8 C. Duan, X. Li, D. Wang, Z. Wang, H. Sun, R. Zheng and Y. Liu, *Sustain. Energy Fuels*, 2022, **6**, 1479–1488.
- 9 Xiaolin, K. Iwase and Honma, J. Mater. Chem. A, 2022, 5, 9292–9296.
- 10 D. Stenzel, B. Zhou, C. Okafor, M. V. Kante, L. Lin, G. Melinte, T. Bergfeldt, M. Botros, H. Hahn, B. Breitung and S. Schweidler, *Front. Energy Res.*, 2022, **10**, 1–11.
- 11 J. Baek, D. Hossain, P. Mukherjee, J. Lee, K. Winther, Y. Jiang, W. Chueh, M. Bajdich and X. Zheng, 2022, 1–22.
- 12 B. Talluri, K. Yoo and J. Kim, J. Environ. Chem. Eng., 2022, 10, 106932.
- 13 X. Yang, S. Liping, L. Qiang, H. Lihua and Z. Hui, *J. Mater. Chem. A*, 2022, **10**, 17633–17641.
- 14 M. Li, M. Song, W. Ni, Z. Xiao, Y. Li, J. Jia, S. Wang and Y. Wang, *Chinese Chem. Lett.*, 2023, **34**, 107571.
- 15 P. Amarnath, R. Madhu, K. Praveen, S. Govindarajan, S. Kundu and Y. Subramaniam, *ACS Appl. Energy Mater.*, 2023, **6**, 5899–5911.
- 16 A. Pasupathi, R. Madhu, S. Kundu and Y. Subramaniam, *Electrochim. Acta*, 2024, **497**, 144621.
- 17 A. Pasupathi, R. Madhu, S. Kundu and Y. Subramaniam, *J. Power Sources*, 2025, **630**, 236144.
- 18 S. Ding, Y. Sun, F. Lou, L. Yu, B. Xia, J. Duan, Y. Zhang and S. Chen, *J. Power Sources*, 2022, 520.
- 19 J. Du, X. Zhang, F. He and Y. Xie, *Electrochim. Acta*, 2023, **461**, 142599.