Ultra-High Efficient Lithium Recovery via Terephthalic Acid from Spent Lithium-ion Batteries

Jiahui Hou^{1,3}, Zexin Wang^{1,3}, Zifei Meng¹, Jinzhao Fu¹, Zeyi Yao¹, Wenting Jin¹, Xiaotu Ma¹, Zhenzhen Yang², Yan Wang^{1*}

¹ Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA

² Chemical Science & Engineering, Argonne National Laboratory, 9700 S Cass Ave, Lemont, IL 60439, USA

³ These authors contributed equally.

* Corresponding: <u>yanwang@wpi.edu</u>

Figure S1 The morphology of TPA under different temperature

Figure S2 The extraction efficiency for lithium and impurity from NMC622 under a) different pressure, b) different time, c) different amount of TPA excess, and d) different temperature.

Figure S 3 The SEM for powder after extraction reaction with different pressure.

Figure S 4 XPS for Mn, Co

Figure S 5 The EDS mapping for virgin NMC622 cathode powder.

Figure S 6 The EDS mapping for extracted NMC622 cathode powder.

Figure S 7 EDS mapping for Li_2TP .

Figure S 8 The morphology for commercial lithium carbonate.

Figure S9 XRD refinement for V-NMC622 and R-NMC622

Figure S10 a)SEM images for recovered TPA and commercial TPA, b) 1H NMR comparison for pristine (P-TPA) and recycled TPA (R-TPA), c) 13C NMR comparison for P-TPA and R-TPA, d) XRD comparison for P-TPA and R-TPA.

Figure S11 Extraction efficiency comparison for used TPA and raw TPA.

Figure S12 Process diagram of a TPA-lithium recovery process. Solid boxes denote common unit operations; dashed box denotes optional unit operation; green denotes products; grey denotes wastes.

Figure S13 Detailed process and equipment usage for TPA-lithium recovery process.

Figure S14 Process diagram of a traditional lithium recovery process. Solid boxes denote common unit operations; dashed box denotes optional unit operation; green denotes products; grey denotes wastes.

Figure S15 Detailed process and equipment usage for traditional lithium recovery process.

Sample ID	Li	Ni	Mn	Co	Fe	Р
NMC622	1.02	0.6	0.2	0.2	-	-
LMO	1.01	-	2	-	-	-
LCO	1.03	-	-	1	-	-
LFP	1.03	-	-	-	1.0	1
Black mass	0.83	0.21	0.57	0.22	0.2wt%	-

Table 1 Summarized stoichiometric elemental ratio obtained from ICP-OES analysis for different raw materials

Pressure	Li TMs	Time	Li TMs	TPA%	Li TMs
685.325	26.14 0.09	5h	99.84 0.36	100%	99.84 0.36
	25.31 0.05		100 0.38		100 0.38
	27.52 0.1		99.71 0.37		99.71 0.37
Mean	26.32 0.08	Mean	99.85 0.37	Mean	99.85 0.37
Standard Deviation	0.79 0.02	Standard Deviation	0.10 0.01	Standard Deviation	0.10 0.01
1085.95	74.76 0.12	4h	99.64 0.23	50%	99.01 0.31
	73.21 0.1		99.81 0.3		98.35 0.26
	75.03 0.13		99.53 0.2		99.21 0.33
Mean	74.33 0.12	Mean	99.66 0.24	Mean	98.86 0.30
Standard Deviation	0.69 0.01	Standard Deviation	0.10 0.04	Standard Deviation	0.32 0.03
1483.01	93.01 0.18	3h	96.44 0.2	40%	98.53 0.3
	92.53 0.16		95.31 0.18		98.02 0.2
	95.21 0.14		97.62 0.26		99.01 0.4
Mean	93.58 0.16	Mean	96.46 0.21	Mean	98.52 0.30
Standard Deviation	1.01 0.01	Standard Deviation	0.82 0.03	Standard Deviation	0.35 0.07
1732.54	98.96 0.27	2h	89.98 0.19	30%	97.5 0.31
	97.53 0.21		89.03 0.15		96.31 0.21
	99.02 0.3		90.16 0.23		98.05 0.4
Mean	98.50 0.26	Mean	89.72 0.19	Mean	97.29 0.31
Standard Deviation	0.60 0.03	Standard Deviation	0.43 0.03	Standard Deviation	0.63 0.07
2025.07	99.35 0.27	1h	69.85 0.16	20%	94.94 0.32
	100 0.35		67.23 0.1		94.01 0.21
	99.01 0.21		69.16 0.12		95.34 0.4
Mean	99.45 0.28	Mean	68.75 0.13	Mean	94.76 0.31
Standard Deviation	0.36 0.05	Standard Deviation	0.96 0.02	Standard Deviation	0.48 0.07
2363.6	99.53 0.31			0%	93.36 0.35
	100 0.38				92.34 0.25
	99.61 0.35				94.01 0.36
Mean	99.71 0.35			Mean	93.24 0.32
Standard Deviation	0.18 0.02			Standard Deviation	0.60 0.04
2757.13	99.84 0.36				
	100 0.38				
	99.71 0.37				
Mean	99.85 0.37				
Standard Deviation	0.10 0.01				

Table 2 The detailed information for repeatable data

tommonotumo	saturated	Volume	Total
temperature	vapor pressure	expansion	pressure
T1	198.97	486.36	685.33
T2	478	607.95	1085.95
Т3	794	689.01	1483.01
T4	1003	729.54	1732.54
T5	1255	770.07	2025.07
Τ6	1553	810.6	2363.60
Τ7	1906	851.13	2757.13

Table 3 Detailed calculation information for pressure.

Excess of TPA	Base TPA
0%	MLi*1*MWTPA
20%	MLi*1.2*MWTPA
30%	MLi*1.3*MWTPA
40%	MLi*1.4*MWTPA
50%	MLi*1.5*MWTPA
100%	MLi*2*MWTPA

Table 4 Detailed calculation for excess of TPA.

*MLi=mol of lithium in CAM

*MWTPA=molar weight of TPA

Sample ID	Li	Ni	Mn	Со
Pristine NMC622	1.02	0.6	0.2	0.2
Extracted NMC622	0.0005	0.6	0.2	0.2
Li ₂ TP (mg/kg)	74,970.6	1832.1	615.2	673.5

Table S5 ICP results for extracted-NMC622 and $\mathrm{Li}_2\mathrm{TP}$ powder.

XRF test results (mg/kg)														
	Mg	Al	Si	Р	S	Ca	Ti	Mn	Fe	Со	Ni	Cu	Zn	Purity%
C-Li ₂ CO ₃	4620	1364	/	/	318	210	/	48	3438	104	/	19	71	98.97%
R-Li ₂ CO ₃	/	1253	261	/	825	914	228	129	1456	/	22	25	29	98.77%

Table 6 XRF test results for commercial $\mathrm{Li}_2\mathrm{CO}_3$ and recovered $\mathrm{Li}_2\mathrm{CO}_3$

ICP test results (mg/kg)														
	Mg	Al	Si	Р	S	Ca	Ti	Mn	Fe	Со	Ni	Cu	Zn	Purity%
C-Li2CO3	12	206	788	126	280	/	/	30	92	8	38	/	38	99.84%
R-Li2CO3	28	132	392	118	216	/	/	22	50	8	30	/	28	99.90%

Table 7 ICP test results for commercial $\mathrm{Li}_2\mathrm{CO}_3$ and recovered $\mathrm{Li}_2\mathrm{CO}_3$

	a-axis	c-axis	Volume	Ni in Li layer	χ2	Rwp
V-NMC622	2.86610	14.20194	101.033	3.66%	3.91	2.3
R-NMC622	2.87069	14.23199	101.571	3.66%	1.56	3.67

Table 8 Detailed structure from XRD refinement

	Mg	AI	Ρ	S	Ca	Ti	Mn	Fe	Co	Ni	Cu	Zn	Purity%
C-TPA	40	254	90	74	1	/	32	40	18	46	/	54	99.82%
1 st R-TPA	52	228	92	490	/	1	130	52	118	382	/	38	98.79%
20 th R-TPA	48	237	90	512	/	1	127	46	107	468	/	45	98.81%

Table S9 ICP-OES test results for recovered TPA.

	Li%	TMs%	Mechanism	Note	Reference
Oxalic acid	98.8%	<1.5%	Trace soluble of transition metal	The Al will be fully dissolved with	24
			oxalate	Li	
Formic acid	>99%	<5%	Trace soluble transition metal	The ratio of transition metal formate	25
			formate in the concentrated formic	was over 20% in the residue powder.	
			acid		
Citric acid	>95%	>95%	Dissolve all metals in the citric acid	Further solvent extraction method	19-23
				needed to separate transition metals.	
ТРА	>98%	<1%	Trace soluble transition metal	A universal method for LMO, LCO,	This work
			terephthalate	LFP and NMC cathode powder.	

Table S 10 The comparison of TPA-lithium recovery process with other organic acids.