SUPPLEMENTARY INFORMATION

Assignment	Vibration	Wavenumber / cm ⁻¹
Phenolic + alcoholic OH	O-H stretching	3550-3100
$CH_2 + CH_3$	C-H stretching	2940-2935/2896-2840
Unconjugated + Acetyl Carbonyls	C=O stretching	1730
Aromatic backbone vibrations (S > G)	C-C stretching	1595
Aromatic backbone vibrations (G > S)	C-C stretching	1514
S ring breathing	C-C breathing	1326-1324
G ring breathing	C-C breathing	1257
Aryl + alkyl ether bonds	C-O stretching	1219
Aromatic in plane deformation (S)	In plane C-H deformation	1110
Aromatic in plane deformation (G)	In plane C-H deformation	1031

Table S1 Assignment of FTIR peaks for lignin extracted from holm oak.

Table S2 Number-average, weight-average molecular weights and polydispersity of holm oak extracted lignin compared with otherGVL extracted lignin found in the literature.

Biomass	Solvent System	Reaction Conditions	M _n	M _w	PDI	Reference
			(g mol⁻¹)	(g mol⁻¹)		
Holm Oak	GVL:H ₂ O [50:50 (w:w)]	170° C, 2h	835	2156	2.6	This work
Eucalyptus	GVL:H ₂ O [50:50 (w:w)]	180° c, 2.5 h	915	2437	2.7	1
Globulus						
Cotton Stalk	GVL:H ₂ O [60:40 (w:w)]	170° C, 1h	220	610	2.8	2
	10 mM H ₂ SO ₄					
Masson pine	GVL:H ₂ O [80:20 (w:w)]	150° C, 1h	1172	5980	5.1	3
	75 Mm H ₂ SO ₄					

Hybrid Poplar	GVL:H ₂ O [90:10 (w:w)]	120 °C 1h	841	2883	3.4	4
	85 mM H ₂ SO ₄					
Eucalyptus	GVL:H ₂ O [80:20 (w:w)]	120° C, 1h	1320	1900	1.4	5
Camaldulensis						
Dehnh	20 Mm H ₂ SO ₄					
Hybrid	GVL	100° C, 2h	5310	6350	1.2	6
Pennisetum						
	5 mM H ₂ SO ₄					

Figure S1 Electrochemical characterization of LHC-LGN composite electrode in Na half-cells: (a) Cyclic voltammetry curves at different scan rates between 0.1 mV s⁻¹ and 1.0 mV s⁻¹; (b) Relationship between log *i* and log *v*;(c) Percentage of capacitive and diffusive contributions during sodiation as a function of the potential at scan rates of 0.1 mV s⁻¹.

Figure S2 Charge/discharge comparison of LHC with different binders (lignin, PVDF and Na-CMC) in Na half-cells at 1C.

Table S3 First cycle discharge capacities, initial coulombic efficiencies %, second cycle discharge capacities and capacity retentions after 100 cycles of LHC electrodes with different binders at 1C.

Electrode	Discharge Capacity 1 st cycle (mAh g ⁻¹)	ICE (%)	Discharge Capacity 2 nd cycle (mAh g ⁻¹)	Capacity Retention after 100 cycles (%)
LGN	496.0	38.9	215.5	90.6
PVDF	458.0	42.6	204.4	90.6
CMC	449.8	45.3	210.5	92.5

References

- 1 H. Q. Lê, J. P. Pokki, M. Borrega, P. Uusi-Kyyny, V. Alopaeus and H. Sixta, *Ind. Eng. Chem. Res.*, 2018, **57**, 15147–15158.
- 2 M. Wu, J. K. Liu, Z. Y. Yan, B. Wang, X. M. Zhang, F. Xu and R. C. Sun, *RSC Adv.*, 2016, **6**, 6196–6204.
- 3 X. Xu, K. Wang, Y. Zhou, C. Lai, D. Zhang, C. Xia and A. Pugazhendhi, *Fuel*, 2023, **338**, 127361.
- 4 F. Cheng, S. Liu, S. D. Karlen, H. Kim, F. Lu, J. Ralph, L. M. Vázquez Ramos, G. W. Huber and J. A. Dumesic, *Green Chem.*, 2022, **25**, 336–347.
- 5 Y. J. Li, H. Y. Li, X. F. Cao, S. N. Sun and R. C. Sun, ACS Sustain. Chem. Eng., 2018, 6, 12124–12131.
- 6 X. Tan, Q. Zhang, W. Wang, X. Zhuang, Y. Deng and Z. Yuan, *Fuel*, 2019, **249**, 334–340.