Supplementary Information (SI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2025

Supplementary Information

Conversion of Novel Bimetallic Metal Organic Frameworks into Hierarchically Structured Electrocatalysts for High Performance Hydrogen Evolution

Dhouha Abid, ^a Soressa Abera Chala, ^a Rongji Liu, ^a Tobias Rios-Studer, ^a Christean Nickel, ^a Sarra Rahali, ^a Kevin Sowa, ^a Galina Matveeva, ^a Dandan Gao, ^a Ute Kolb, ^a and Carsten Streb *a

^a Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, Mainz 55128, Germany.

Table of Contents

- 1. Materials and Methods
- 2. Experimental section
- 3. Analytical section
- 4. References

1. Materials and Methods

1.1. Chemicals

All chemicals were used as received without further purification: cobalt(II) nitrate hexahydrate ($Co(NO_3)_2 \cdot 6H_2O$, 98%, Sigma-Aldrich), Nickel (II) nitrate hexahydrate ($Ni(NO_3)_2 \cdot 6H_2O$, 98.5%, Sigma-Aldrich), 4,4'-bipyridine ($C_{10}H_8N_2$, 98%, TCI), and (1R,3S)-(+)-camphoric acid ($C_{10}H_{16}O_4$, 99%, Thermo Fisher Scientific).

1.2. Instrumentation

Scanning electron microscopy (SEM): Scanning electron microscopy was performed on a Hitachi 5200 equipped with an EDX detector.

Scanning transmission electron microscopy (STEM): Phase contrast TEM, scanning TEM (STEM), and fast automated diffraction tomography (Fast-ADT) analyses were performed using a Tecnai F30 S-TWIN TEM, equipped with a field emission gun and operated at 300 kV. The setup included a 10 mm condenser aperture, gun lens set to 8, and a spot size of 8. For electron diffraction pattern acquisition, the beam diameter was adjusted to 50 nm. TEM images were recorded using a 4k × 4k Gatan US4000 CCD camera (Gatan, Pleasanton, USA) with a hardware binning of 2.

Fast-ADT diffraction data were acquired using an automated module designed for FEI and JEOL microscopes, enabling high-angular-range tomography (up to 140°) within approximately 5 minutes for TIMEPIX cameras, with a fixed tilt step of 1°. The crystal position was monitored in microprobe STEM mode, and electron diffraction patterns were obtained under the same conditions. Fast-ADT series were automatically collected over a tilt range of -50° to 50°, with a 1° step and an exposure time of 0.1 seconds per frame. To integrate reflection intensities across the tilt wedge experimentally, Fast-ADT was combined with precession electron diffraction (PED), generated by a NanoMEGAS DigiStar unit, maintaining a beam precession angle of 1°.

FT-Infrared spectroscopy (FT-IR): FT-IR analysis was performed at room temperature using a Bruker Tensor 27 spectrometer, equipped with a diamond attenuated total reflectance (ATR) unit, spanning the frequency range of 400-4000 cm⁻¹.

Thermogravimetric analysis (TGA): Thermogravimetric analysis was performed on 5 mg of powdered sample using a Mettler Toledo system. The measurements were conducted under air atmosphere, with the temperature increasing from 30.00 to 450.00 °C at a rate of 5.00 °C/min.

Single crystal X-ray diffraction (SC-XRD) measurements: For the crystal structure determination, X-ray diffraction intensity data for the as-prepared CoNi-MOF was collected on a STOE IPDS 2T diffractometer using Mo-K α radiation. Data were collected at 293 K (2) over 1.9° \leq 0 \leq 32.9°. A total of 20923 reflections were recorded

with 4603 showing intensities of I>2 σ (I). The crystalline structure was solved in the monoclinic crystal system with the P2₁ space group. Cobalt and nickel atom positions were identified using the Patterson method within the WINGX software. [1] Remaining atoms (carbon, oxygen, and nitrogen) were located via successive Fourier calculations and refined with anisotropic thermal parameters using SHELXL-2018. [2] Pore volume was calculated using PLATON SQUEEZE software. Full experimental details for the CoNi-MOFs are summarized in **Table S1**.

Powder X-ray diffraction (PXRD): Powder X-ray diffraction was carried out using a Bruker AXS D8 Advance system with Cu K α radiation (λ = 1.5406 Å) at 40 kV and 40 mA.

Nitrogen Sorption: Nitrogen adsorption-desorption isotherms were measured at 77 K using a 3P Micro 300 Surface Area and Pore Size Analyzer to characterize the surface area and pore size of the materials. Prior to analysis, samples were degassed under vacuum. The as-prepared MOF precursors were degassed at 80 °C (353 K) for 20 hours, while the calcined catalysts were degassed at 200 °C (473 K) for the same duration. Nitrogen gas was used as the adsorbate. Pore size distributions were calculated using the Barrett-Joyner-Halenda (BJH) method with a KJS correction.

X-ray photoelectron spectroscopy (XPS): X-ray photoelectron spectroscopy was conducted using monochromatized Al Kα X-ray radiation with a PHI Quantera SXM system. The binding energies were calibrated with reference to the C 1s peak at 284.8 eV.

X-ray absorption spectroscopy (XAS): X-ray absorption spectroscopy (XAS) measurements were performed using a lab-based hiXAS system with EXAFS mode. A quick-scanning extended X-ray absorption fine-structure (QEXAFS) approach was employed in transmission mode, enabling efficient data acquisition with a monochromator oscillation frequency of 1 Hz. The acquisition time was 10 minutes for Ni and Co foil reference standards, and 3 hours for the other samples. Prior to analysis, all samples were pressed into 15 mm diameter pellets. The XAS data were analyzed using Athena and Artemis software. [3]

Inductively coupled plasma optical emission spectrometry (ICP-OES): ICP-OES was performed using a Perkin Elmer Plasma 400 spectrometer. Measurements were conducted in an aqueous H_2SO_4 - HNO_3 solution.

1.3. Electrochemical Measurements

Preparation of the Working Electrode: The fabrication of the working electrode is a crucial step in assessing the electrochemical properties and practical applicability of the synthesized catalysts. To prepare the catalyst ink, 5 mg of the calcined Co, Ni and CoNi-MOF catalyst was dispersed in a mixture containing 900 μ L of isopropanol, 50 μ L of deionized water, and 50 μ L of Nafion solution (5 wt.% in a lower alcohol mixture). The suspension was sonicated for 1 hour to ensure uniform dispersion. For electrode preparation, 13 μ L of the ink was drop-cast onto a glassy carbon electrode (GCE), or

100 μL was applied onto carbon paper (1 cm² surface area). The modified electrodes were air-dried, achieving a catalyst loading of 0.3 mg·cm⁻².

Electrochemical measurements were conducted using an Ametek workstation with PMC-1000 configured in a three-electrode setup. The working electrode was a glassy carbon electrode (GCE) with a disk surface area of 0.196 cm². A Hg/HgO electrode served as the reference electrode, while a graphite rod acted as the counter electrode. The electrolyte used in the experiment was a 1 M aqueous solution of KOH. The hydrogen evolution reaction (HER) activity was evaluated via linear sweep voltammetry (LSV) at a scan rate of 5 mV s⁻¹ using a PMC 1000 electrochemical workstation (AMETEK Scientific Instruments). The measured potentials were referenced to the reversible hydrogen electrode (RHE) using the Nernst equation:

$$E_{RHE} = E_{Ha/HaO} + E^{0}_{Ha/HaO} + 0.0592 \text{ V} \times \text{pH}$$

Polarization curves were recorded without iR compensation, and the Tafel slope was determined using the Tafel equation:

$$\eta = a + b \log(j)$$

Here, j represents the current density, which was normalized to the geometric surface area of the GCE. For long-term stability assessments, the catalyst was supported on carbon paper (~1 cm²).

Electrochemically Active Surface Area (ECSA): The ECSA of the catalysts was estimated by evaluating the electrochemical double-layer capacitance (CdI) through cyclic voltammetry (CV) in the potential window of 0.08 V to 0.1 V, where no faradaic processes occur. To ensure signal stability, multiple cyclic scans were performed before data collection.

Electrochemical Impedance Spectroscopy (EIS): EIS measurements were conducted at 1.55 V vs. RHE with a 5 mV AC perturbation, sweeping frequencies from 100 kHz to 0.01 Hz. The impedance spectra were analyzed using Z view software by fitting the data to an appropriate equivalent circuit model.

Faradaic efficiency: Hydrogen production was quantified using gas chromatography (Shimadzu GC-2030) equipped with a barrier ionization discharge (BID) detector. Highpurity helium (He, 99.999%) served as the carrier gas. The faradaic efficiency was determined using the following equation:

$$FE_i = \frac{\alpha_i n_i F}{Q} \times 100\%$$

Where; α_i represents the number of electrons needed to generate one hydrogen molecule, n_i denotes the number of moles, F is the Faraday constant (96,485 C mol⁻¹), and Q corresponds to the total electric charge transferred during the experiment.

1.4. Flow-cell measurements:

Preparation of the Working Electrode: For the flow-cell experiments, the catalyst ink was prepared following the same procedure described above. The ink was drop-cast onto carbon paper with a geometric area of 2 cm² and dried at room temperature. After solvent evaporation, the catalyst loading at the cathode was adjusted to 0.6 mg cm⁻².

Flow-cell measurements: An anion exchange membrane (AEM) electrolyzer was assembled using a sandwich-type configuration. The coated carbon paper (2 cm², 0.6 mg cm⁻² loading) served as the cathode, while commercial Ni foam was used as the anode. Current collectors were employed on both sides, and an AEM (pre-activated in 1 M KOH) was positioned between the electrodes. The cell was operated using 1 M KOH electrolyte, which was continuously circulated through the flow channels via a peristaltic pump to ensure efficient electrolyte renewal and minimize concentration gradients during operation. Before polarization measurements, the cell was conditioned under open-circuit conditions at 70 °C for 30 min. Polarization curves were subsequently recorded under steady-state conditions, followed by long-term electrolysis at a constant current density of 200 mA cm⁻² to assess the stability of the catalyst.

2. Experimental section

2.1. Synthesis

Synthesis of monometallic Co-MOF Precursor

To synthesize the monometallic Co-MOF, an aqueous solution of $Co(NO_3)_2 \cdot 6H_2O$ (291 mg, 1 mmol) was gradually added to a mixture of D-camphoric acid (10 mg, 0.5 mmol) and 4,4'-bipyridine (79 mg, 0.5 mmol) in N,N-dimethyl formamide (DMF) under continuous stirring at room temperature. The solution was then neutralized with 0.1 M aqueous KOH, followed by microwave-assisted heating at 70 °C for 35 min under an autogenous pressure of 2 bar. The resulting pink, needle-shaped crystals were thoroughly washed with water, ethanol, and DMF three times, and air-dried at room temperature. The synthesized MOF was activated under vacuum at 80 °C for 4 h to remove the solvent molecules trapped in the pores of the MOF framework. This activation yielded the pure MOF with a 57% in yield. FT-IR spectra (cm⁻¹, with their corresponding intensities (s = strong, m = medium, w = weak): 3260 (w), 2961 (m), 2885 (w), 1610 (w), 1542 (s), 1410 (s), 855 (s), 465 (m).

Synthesis of monometallic Ni-MOF Precursor

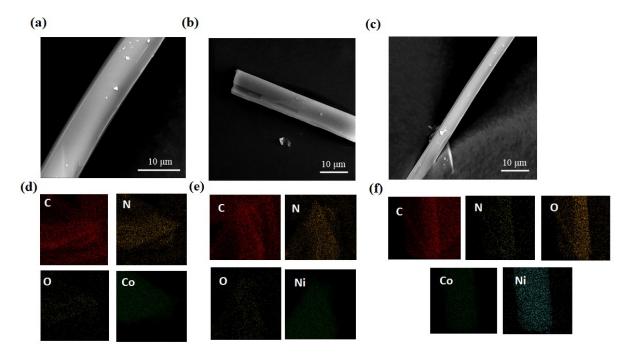
For the monometallic Ni-MOF synthesis, the same protocol was followed, except that a mixture of Ni(NO)₂·6H₂O (7.3 mg, 0.5 mmol) was used. The reaction yielded the purified MOF in 50% yield. FT-IR spectra (cm⁻¹, with their corresponding intensities (s = strong, m = medium, w = weak): 3120 (w), 2962 (m), 2820 (w), 1627 (w), 1530 (s), 1462 (s), 870 (s), 463 (m).

Synthesis of CoNi-dual-doped MOF Precursor

For the dual-doped CoNi-MOF synthesis, the same protocol was followed, except that a mixture of $Co(NO)_2 \cdot 6H_2O$ (7 mg, 0.5 mmol) and $Ni(NO)_2 \cdot 6H_2O$ (7.3 mg, 0.5 mmol) was used. The reaction yielded the purified MOF in 46% yield. FT-IR spectra (cm⁻¹, with their corresponding intensities (s = strong, m = medium, w = weak): 3110 (w), 2952 (m), 2880 (w), 1607 (w), 1540 (s), 1402 (s), 850 (s), 461 (m).

Synthesis of monometallic Co-MOF catalyst

The obtained Co-MOF crystals were placed in a quartz crucible and calcined in a tube furnace at temperatures ranging from 550 to 850 °C under a continuous flow of argon for 3 h, with a controlled heating rate of 5 °C/min. After pyrolysis, the resulting oxide sample was thoroughly washed with deionized water and ethanol to remove residual impurities. The final black products were designated based on the calcination temperature: Co-MOF@550 °C, Co-MOF@650 °C, Co-MOF@750 °C, and Co-MOF@850 °C.

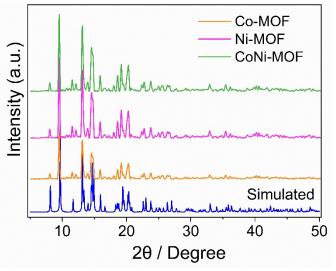

Synthesis of Ni-dual-doped catalyst

The Ni-MOF crystals were calcined at 850°C under the same conditions, and labeled as Ni-MOF@850°C

Synthesis of CoNi-dual-doped catalyst

The CoNi-MOF crystals were calcined at 850°C under the same conditions, and labeled as CoNi-MOF@850°C.

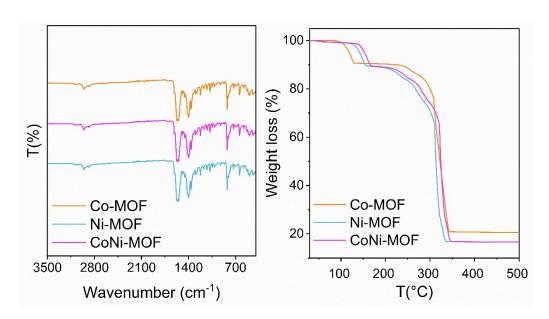
3. Analytical section


Fig. S1 SEM images of (a) Co-MOF, (b) Ni-MOF, (c) CoNi-MOF, and (d-f) Corresponding elemental component mappings of Co-MOF, Ni-MOF and CoNi-MOF, respectivelly.

The morphologies of the as-synthesized Co-MOF, Ni-MOF and CoNi-MOF were investigated using scanning electron microscopy (SEM). SEM images of all MOF precursors reveal a distinct needle-like morphology, characteristic of porous structures. In addition, energy-dispersive X-ray spectroscopy (EDX) confirmed the uniform distribution of Co, C, O, and N in the Co-MOF, and Ni, C, O, and N in the Ni-MOF samples and CoNi-MOF showed a homogeneous distribution of Co, Ni, C, O, and N, verifying the successful incorporation of nickel into the framework.

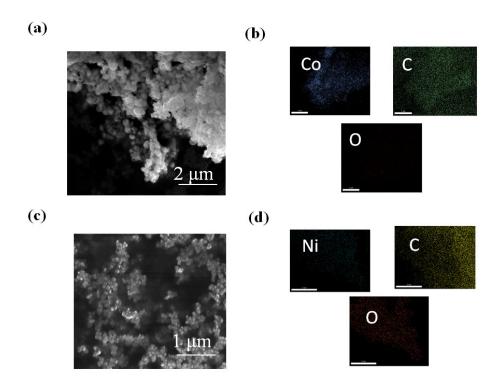
Table. S1 Experimental details for the as-prepared CoNi-MOF.

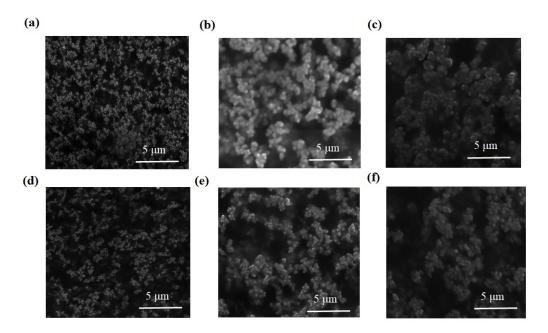
	CoNi-MOF
Chemical formula	C ₃₀ H ₃₆ (Co/Ni) ₂ N ₂ O ₁₂
M _r (g/mol)	742.53
Crystal system, space group	Monoclinic, P2 ₁
Temperature (K)	293 (2)
a, b, c (Å)	6.7(6), 13.4(6), 18.5(19)
β (°)	97.5 (8)
V (Å ³)	1665.9(3)
Z	2
Radiation type	Μο Κα
D	1.4
Crystal size (mm) No. of measured, independent and observed [I > 2σ(I)] reflections	0.24 × 0.09 × 0.08 20923, 9908, 142
R _{int}	0.053
$R[F^2 > 2\sigma(F^2)], wR(F^2),$ S	0.086, 0.255, 1.0
No. of reflections	6116
Flack parameter	-0.016 (1)


Fig. \$2 The and simulated PXRD Co, Ni-MOF, and

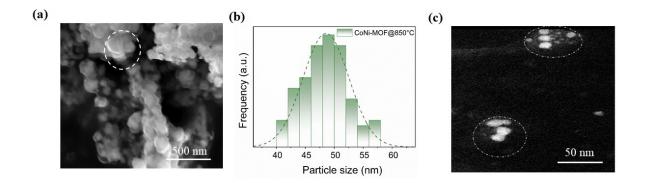
experimental

patterns


CoNi-MOF.


Fig. S3 (a) FT-IR Spectra of the monometallic Co, Ni-MOF, and bimetallic CoNi-MO, (b) TGA profiles of Co, Ni-MOF, and CoNi-MOF.

The FT-IR spectra of MOF precursors, recorded at room temperature, confirm the removal of guest solvent molecules from the pores after activation (**Figure S2a, SI**). Notable changes in the infrared spectra include a broad band at 3260, 3220 and 3110 cm⁻¹ (OH-stretching band), 1610, 168 and 1607 cm⁻¹ (H-O-H bending mode), and 850, 851, and 855 cm⁻¹, respectively for Co-MOF, Ni-MOF, and CoNi-MOF. After the activation process, both MOFs exhibit similar IR spectra, with characteristic peaks of the organic ligands.


The TGA profiles for porous Co, Ni, and CoNi-MOF (**Figure S2b, SI**) reveal a two-step decomposition process. The initial weight loss, occurring between 80.25 and 129.17 °C for Co-MOF, 81.25 and 140.23 for Ni-MOF and 86.91 and 156.16 °C for CoNi-MOF, corresponds to a 9.49, 9.20 and 9.48 wt%, respectively, attributed to the release of coordinated water molecules. The second stage shows significant weight loss between 184.16 and 341.66 °C for Co-MOF (69.73 wt%), 185.32 and 333.60 °C (68.70 wt%) for Ni-MOF and 190.51 and 335.41 °C for CoNi-MOF (73.57 wt%), associated with the decomposition of the structural framework. This leads to the formation of cobalt oxide (CoO) in the Co-MOF sample, and both nickel oxide (NiO) and cobalt oxide (CoO) as residues in the CoNi-MOF sample.

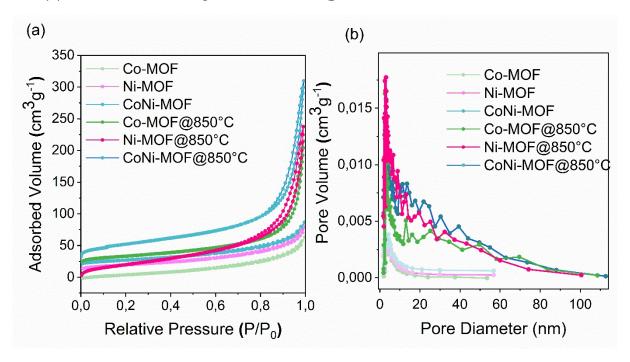
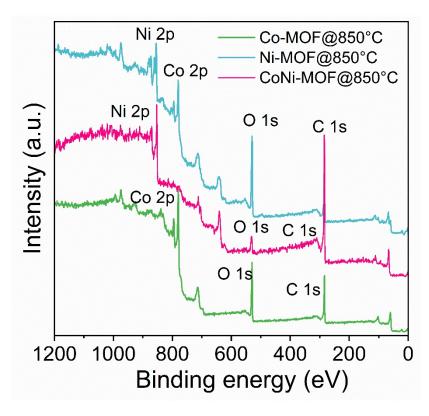

Fig. S4 (a) SEM images of Co-MOF@850°C, (b) the corresponding pore size distributions of Co-MOF@850°C, (c) SEM images of Co-MOF@850°C, and (d) the corresponding pore size distributions of Co-MOF@850°C.

Fig. S5 SEM images of (a–c) Co-MOF calcined at 550, 650, and 750 °C, and (d–f) Ni-MOF calcined at 550, 650, and 750 °C.


Fig. S6 (a) SEM image for CoNi-MOF@850°C, (b) particle size distribution histogram, and (c) HAADF-STEM image for CoNi-MOF@850°C.

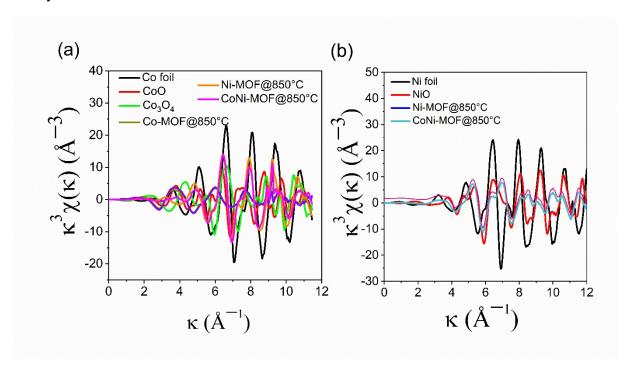
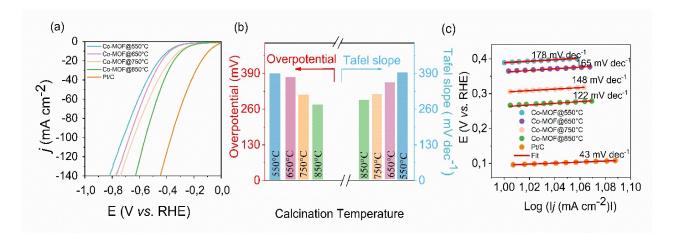

Fig. S7 (a) Nitrogen adsorption-desorption isotherms of Co, Ni, CoNi-MOF, and Co, Ni, CoNi calcined at 850°C, (b) the corresponding pore size distributions of all samples.

Table. S2 Specific surface area, pore volume and pore size distribution of Co-MOF, CoNi-MOF, and their calcined forms at 850°C.

Material	Surface area (S _{BET}) m ² /g	Pore volume (V _{Tot}) cm ³ /g	Pore size (BJH) Nm
Co-MOF	36.6	0.09	10.5
Ni-MOF	41.4	0.1	11.3
CoNi-MOF	45.7	0.1	11.2
Co-MOF@850°C	124.8	0.4	14.0
Ni-MOF@850°C	141.3	0.7	22.8
CoNi-MOF@850°C	183.2	0.5	23.7


Fig. S8 XPS survey of Co-MOF@850°C, Ni-MOF@850°C, and CoNi-MOF@850°C catalysts.

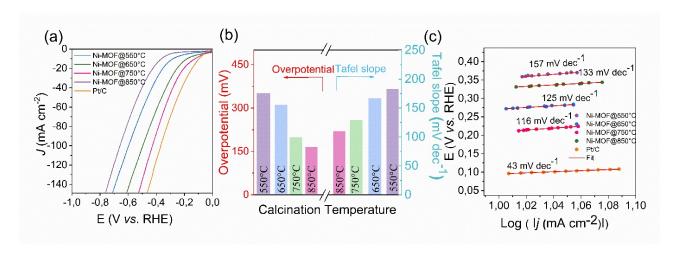
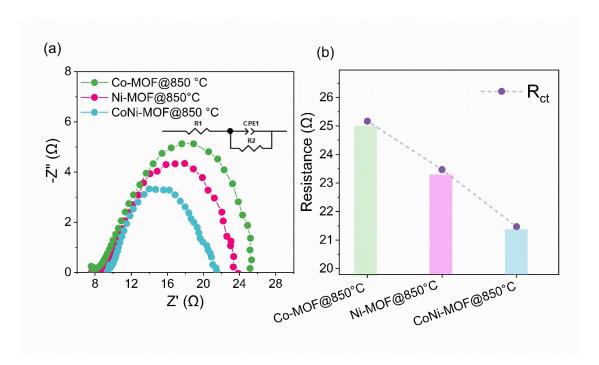

Fig. S9 (a) Co K-edges, and (b) Ni K-edges of Co, Ni and CoNi-MOFs, and Co, Ni and CoNi- MOF@850°C catalysts along with standard Co and Ni reference materials.

Table. S3 Metal element contents of the monometallic Co and Ni-MOFs and the bimetallic CoNi-MOF and their calcined catalysts at 850°C determined by ICP-OES.


Samples	ICP- OES		
	Co (wt. %)	Ni (wt. %)	
Co-MOF	16.88	-	
Ni-MOF	-	16.03	
CoNi-MOF	9.45	7.46	
Co-MOF@850°C	6.14	-	
Ni-MOF@850°C	-	6.01	
CoNi-MOF@850°C	3.73	2.52	

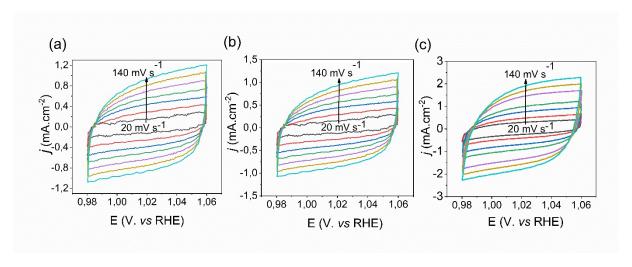

Fig. S10 Electrocatalytic HER performance of Co-MOF catalysts calcined at different temperatures in 1 M KOH without iR correction: (a) LSV curves, (b) histogram of Tafel slopes and overpotentials at j = 10 mA cm⁻², and (c) the corresponding Tafel slope plots.

Fig. S11 Electrocatalytic HER performance of Ni-MOF catalysts calcined at different temperatures in 1 M KOH without iR correction: (a) LSV curves, (b) histogram of Tafel slopes and overpotentials at j = 10 mA cm⁻², and (c) the corresponding Tafel slope plots.

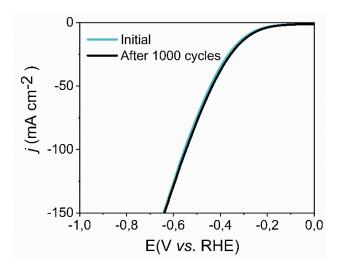

Fig. S12 (a) Nyquist plots for Co-MOF@850°C, Ni-MOF@850°C, and CoNi-MOF850°C catalysts, and (b) R_{ct} values for Co, Ni and CoNi catalysts.

Fig. S13 Cyclic voltammetry (CV) plot measured at different scan rates (20–140 mV s $^{-1}$) for (a) Co-MOF@850°C, (b) Ni-MOF@850°C and (c) CoNi-MOF@850°C catalysts.

The double-layer capacitance (C_{dl}) was evaluated using cyclic voltammetry (CV) at different scan rates (20–140 mV s⁻¹) within a potential window of 0.98–1.06 V vs. RHE. As the scan rate increased, the current density increased for Co, Ni and CoNi catalysts,

with CoNi-MOF@850°C exhibiting the highest current density. To determine the C_{cll} value, the average capacitive current density (Δj) was calculated using $\Delta j = |jc - ja|/2$, where j_c and j_a represent the cathodic and anodic current densities, respectively. At a potential of 1.02 V, Δj was plotted against the scan rates, and the slope of the resulting linear fit provided the C_{cll} . Besides, the electrochemically active surface area (ECSA) of CoNi-MOF@850°C, calculated using ECSA = C_{cll}/C_s (with Cs assed to be 0.02 mF/cm² in 1 M aqueous KOH), was determined to be 700.1 cm², significantly higher than that of Co-MOF@850°C (306.5 cm²) and Ni-MOF@850°C (364.5 cm²). This indicates that the Ni substitution generate more accessible active sites, thereby enhancing the overall catalytic performance.

Fig. S14 LSV curves of CoNi-MOF@850 °C catalyst recorded before and after 1000 CV cycles.

Table. S4 Comparison of HER activity of Co-MOF@850 °C, Ni-MOF@850 °C, and CoNi-MOF@850 °C with other reported Co- and Co-Ni-based catalysts.

Electrocatalyst	Overpotential (mV)	Tafel slope (mV dec ⁻¹)	References
CoNi/NBC	117	146	[4]
Ni ₁ Co ₁₀ /C-oxide	343	127	[5]
CoNiO@CNC	149	80	[6]
Co-MOF-800	92	127	[7]
CoNi-NCS	260	122	[8]
CoNiP/CoNi	174	125	[9]
XoNiP/CoNi-RGO	150	97	[10]
Ni _{2.5} -Co _{2.5} -Pn	148	118	[11]
Co _x -Niy-P	130	93	[12]
CoNi/CoNiO ₂ @NC-	237	125	[13]
600 CoNiP-NWs	252	128	[14]
CoNiP ₄ O ₁₂	234	71.4	[15]
H₁-NiCoP	230	145	[16]
CoS@CoNi- LDH/CC	124	89	[17]
Ni-Co-S	129	96.1	[18]
Ni doped Co ₃ S ₄	270	97	[19]
CoNi-MOF@NF	147	109.6	[20]
Co-MOF@850°C	239	122	This work
Ni-MOF@850°C	172	116	This work
CoNi-MOF@850°C	148	65	This work

4. References

- 1. L. J. Farrugia, *Journal of Applied Crystallography*, 1999, 32, 837–838.
- 2. G. M. Sheldrick, *Acta Crystallographica Section C: Structural Chemistry*, 2018, 74, 2053–2296.
- 3. B. Ravel, M. Newville, *Journal of Synchrotron Radiation*, 2005, 12, 537–541.
- 4. M. R. Liu, Q. L. Hong, Q. H. Li, Y. Du, H. X. Zhang, S. Chen, T. Zhou, J. Zhang, *Advanced Functional Materials*, 2018, 28, 1805520.
- 5. X. Yang, Z. Li, Z. Yang, D. Meng, Z. Wang, *Catalysis Science & Technology*, 2024, 14, 6814–6823.
- 6. Z. Li, J. Wang, J. Zhang, C. Huang, J. J. Zhou, L. Xu, L. Wang, S. Lu, L. Chen, *Applied Surface Science*, 2024, 674, 159076.
- 7. A. Gupta, C. A. Allison, M. E. Ellis, J. Choi, A. Davis, R. Srivastava, F. M. de Souza, D. Neupane, S. R. Mishra, F. Perez, A. Kumar, T. Dawsey, *International Journal of Hydrogen Energy*, 2022, 47, 37684–37696.
- 8. Y. Lu, Y. Deng, S. Lu, Y. Liu, J. Lang, X. Cao, H. Gu, *Nanoscale*, 2019, 11, 21259–21265.
- 9. P. Arunkumar, S. Gayathri, J. H. Han, ChemSusChem, 2021, 14, 1921–1935.
- 10. Z. Cai, A. Wu, H. Yan, Y. Xiao, C. Chen, C. Tian, L. Wang, R. Wang, H. Fu, *Nanoscale*, 2018, 10, 7619–7629.
- 11. Y. Du, M. Zhang, Z. Wang, Y. Liu, Y. Liu, Y. Geng, L. Wang, *Journal of Materials Chemistry A*, 2019, 7, 8602–8608.
- 12. Q. Zhou, D. Wang, *New Journal of Chemistry*, 2022, 46, 7490–7496.
- 13. Q. Zhang, X. L. Li, B. X. Tao, X. H. Wang, Y. H. Deng, X. Y. Gu, L. J. Li, W. Xiao, N. B. Li, H. Q. Luo, *Applied Catalysis B: Environmental*, 2019, 254, 634–646.
- 14. I. Amorim, J. Xu, N. Zhang, D. Xiong, S. M. Thalluri, R. Thomas, J. P. S. Sousa, A. Araújo, H. Li, L. Liu, *Catalysis Today*, 2020, 358, 196–202.
- 15. B. Guo, J. Zhao, Y. Xu, X. Wen, X. Ren, X. Huang, S. Niu, Y. Dai, R. Gao, P. Xu, S. Li, ACS Applied Materials & Interfaces, 2024, 16, 8939–8948.
- 16. J. Zhang, L. Zhang, X. Wang, W. Zhu, Z. Zhuang, *Chemical Communications*, 2019, 56, 90–93.
- 17. K. Ao, Q. Wei, W. A. Daoud, *ACS Applied Materials & Interfaces*, 2020, 12, 33595–33602.
- 18. C. Wu, Y. Du, Y. Fu, W. Wang, T. Zhan, Y. Liu, Y. Yang, L. Wang, *Composites Part B: Engineering*, 2019, 177, 107252.
- 19. J. Wang, Y. Wang, Z. Yao, Z. Jiang, *Chinese Journal of Chemical Engineering*, 2022, 42, 380–388.
- 20. J. Chen, H. Zhang, Z. Shi, Q. Lu, Y. Feng, T. Zhang, *Ionics*, 2025, 31, 9419–9430.