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Fig. S1 'H NMR spectra of a) poly (arylene methyl piperidine) and b) PAP.
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Fig. S2 FTIR image of PAP.
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Fig. S3 Anionic conductivity of AEM and proton conductivity of PEM at different

temperature.
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Patterned AEL

Fig. S4 Digital photographs of the anion exchange layer, a) patterned AEL, b) smooth

surface AEL



Fig. S5 SEM image of a) patterned AEL, b) smooth surface AEL. Inset of b) shows the

cross-sectional SEM image of S-BPM.
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Fig. S6 Representative AFM topography comparison of membrane surface roughness:

a) patterned AEL, b) smooth surface AEL.
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Figure S7. Schematic illustration of 4-electrode cell used to evaluate BPM polarization

behavior.



200

- SA-BPM
=== S-BPM
150
1.6
Eonset
1.2+
1.01

3]
o

Onset potential (V)
o
[o-]

Current density (mA/cm?)
3
-

S
- ©

0 1 2 3 4 5 6 7
Transmembrane voltage (V)

Fig. S8 Onset potential determination of SA-BPM, and S-BPM.
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Fig. S9 |-V curves of S-BPM at 50°C and 70°C.
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Fig. S10 a) The standard curve of HMF by plotting the HMF concentration with respect

to the absolute HPLC peak area. b) The standard curve of FDCA by plotting the FDCA

concentration with respect to the absolute HPLC peak area.
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Fig. S11 |-V curves using different HMFOR catalytic electrodes.
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Fig. S12 Performance of HER coupling HMFOR with Ni(OH), as anode. a) HMF
conversion efficiency; b) HMF conversion, FDCA vyield, and FE formation in the

electrolyzer.
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Fig. S13 Schematic illustration of the membrane single-sided reaction device used for

preparing the catalyst layer.
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Fig. S14 XPS survey spectra of PAP, PDA—PAP, and FeOOH@PDA—-PAP. For PAP and
PDA-PAP, characteristic signals of C 1s, O 1s, N 1s, and Br 2d are observed. Compared
with PAP, PDA-PAP shows a markedly increased N 1s intensity, consistent with the
successful introduction of the PDA layer. After FeOOH deposition, FFOOH@PDA-PAP
exhibits the appearance of Fe-related signals, while the N 1s signal becomes
attenuated, which is consistent with partial surface coverage of the underlying PDA—-
PAP by the FeOOH overlayer (attenuation of the photoelectron signal through the

overlayer), supporting the successful construction of the FEOOH@PDA catalytic layer.
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Fig. S15 High-resolution XPS Fe 2p spectrum of FEOOH@PDA—-PAP. The Fe 2p region

(typically ~700-740 eV) shows the Fe 2p3/, and Fe 2p;,, components accompanied by

characteristic satellite features. Peak deconvolution of the Fe 2p envelope vyields

multiple components associated with Fe(lll) species, which is consistent with the

formation of an Fe(lll) oxyhydroxide (FeOOH-like) overlayer on PDA-PAP.
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Fig. $16 The |-V curve of blank sample (catalyst-free SA-BPM) at 30 °C.
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Fig. S17 Mean values and standard deviations of HMF conversion, FDCA vyield, and FE

for HMFOR coupled with HER of three independent measurements.



Table S1. IEC of Anion exchange layer (PAP) and cation exchange layer (PFSA).

Samples IEC (meg g)

AEL 2.315

CEL 1.139




