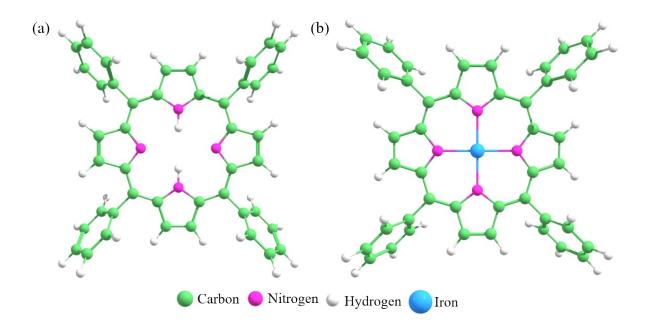
Supplementary Information (SI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2025

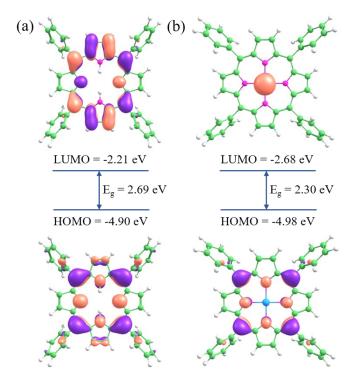
Supplementary Information

Computational Study of OH, NH₂-Functionalized Iron-Doped Tetraphenylporphyrin as a Photocatalyst for CO₂ Reduction to C₁ Fuels

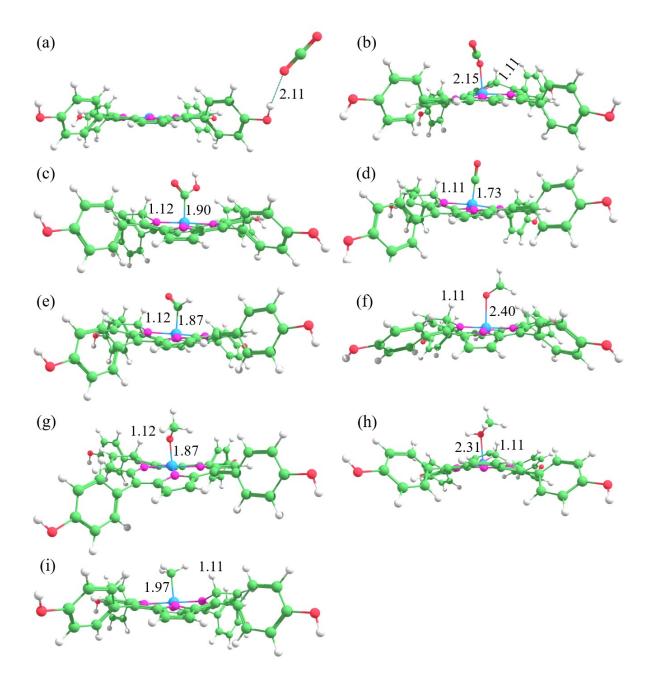
Thangaraj Thiruppathiraja, ¹ Basheer Aazaad, ² Angappan Mano Priya^{3*}

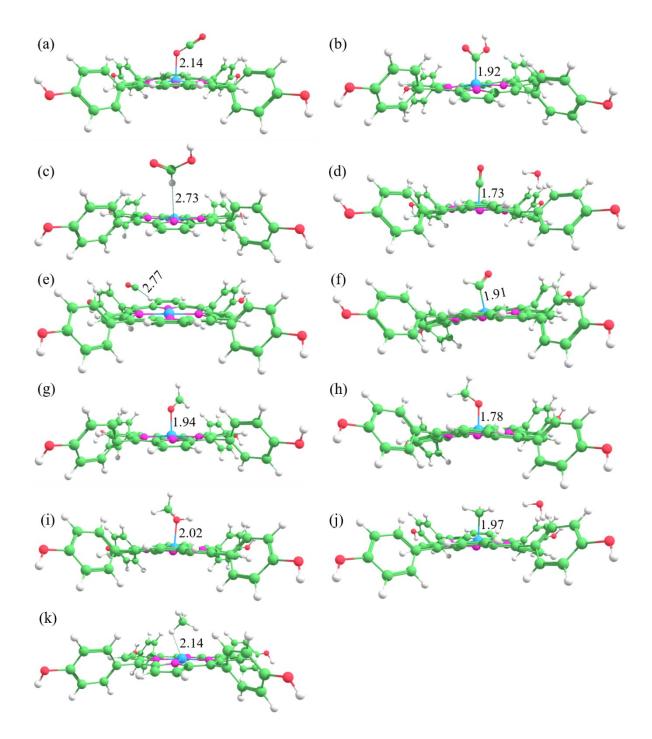

¹Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China.

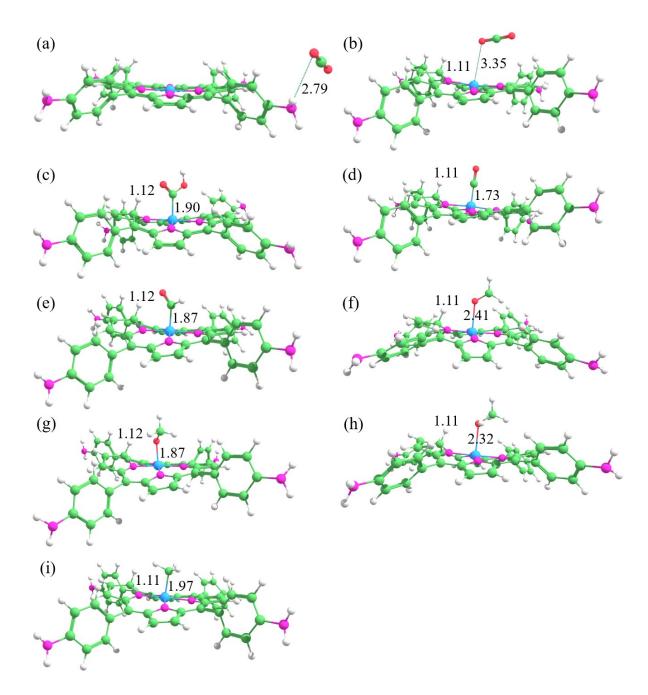
²Department of Physics, Saveetha Engineering College, Thandalam, Chennai 602105, Tamil Nadu, India.


³IPR (Institut de Physique de Rennes) —UMR 6251, Université de Rennes, CNRS, F-35000 Rennes, France.

*Corresponding Author Email: manoophys@gmail.com,


mano-priya.angappan@univ-rennes.fr


Fig. S1. Optimized geometries of (a) Tetraphenylporphyrin (TPP) and (b) iron-doped tetraphenylporphyrin (Fe-TPP) surfaces. The structures illustrate the atomic arrangements and coordination environments after full geometry optimization. These optimized configurations serve as the basis for analyzing their structural stability, electronic properties, and catalytic reactivity.


Fig. S2. HOMO-LUMO plots of (a) TPP and (b) Fe-TPP surfaces. The violet and orange regions represent the negative and positive lobes of the molecular orbitals, respectively, illustrating the spatial distribution of electron density in the frontier orbitals.

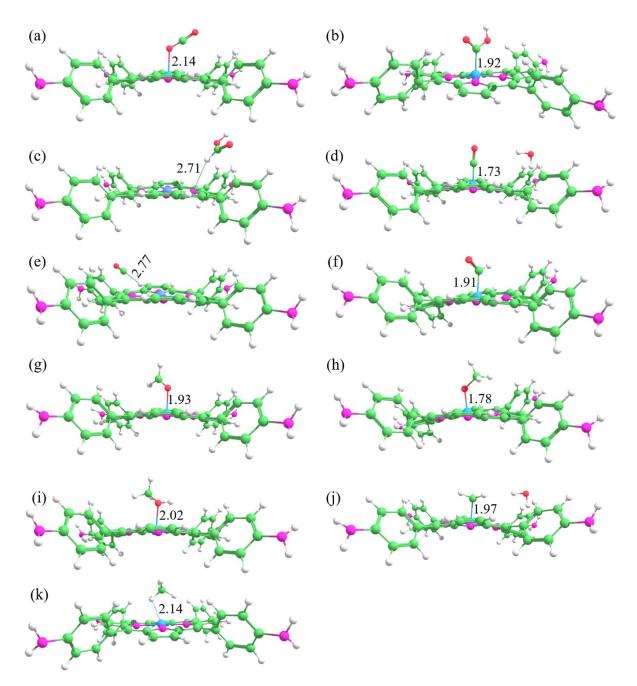

Fig. S3. The optimized geometries of reactants (CO₂ reduction to C₁ products): (a) *+CO₂, (b) *CO₂+H, (c) *COOH+H, (d) *CO+H, (e) *CHO+H, (f) *OCH₂+H, (g) *OCH₃+H, (h) *CH₃OH+H, and (i) *CH₃+H. The * indicates the adsorbed on the Fe-OHTPP surface. The unit of bond lengths are indicated in Å. The green, red, pink, white, and blue represents the carbon, oxygen, nitrogen, hydrogen atoms, and iron transition metal.

Fig. S4. The optimized geometries of products (CO₂ reduction to C₁ products): (a) *CO₂, (b) *COOH, (c) *+HCOOH, (d) *CO+H₂O, (e) *+CO, (f) *CHO, (g) *OCH₂, (h) *OCH₃ (i) *CH₃OH, (j) *CH₃+H₂O, and (k) *+CH₄. The * indicates the adsorbed on the Fe-OHTPP surface. The unit of bond lengths are indicated in Å. The green, red, pink, white, and blue represents the carbon, oxygen, nitrogen, hydrogen atoms, and iron transition metal.

Fig. S5. The optimized geometries of reactants (CO₂ reduction to C₁ products): (a) *+CO₂, (b) *CO₂+H, (c) *COOH+H, (d) *CO+H, (e) *CHO+H, (f) *OCH₂+H, (g) *OCH₃+H, (h) *CH₃OH+H, and (i) *CH₃+H. The * indicates the adsorbed on the Fe-NH₂TPP surface. The unit of bond lengths are indicated in Å. The green, red, pink, white, and blue represents the carbon, oxygen, nitrogen, hydrogen atoms, and iron transition metal.

Fig. S6. The optimized geometries of products (CO₂ reduction to C₁ products): (a) *CO₂, (b) *COOH, (c) *+HCOOH, (d) *CO+H₂O, (e) *+CO, (f) *CHO, (g) *OCH₂, (h) *OCH₃ (i) *CH₃OH, (j) *CH₃+H₂O, and (k) *+CH₄. The * indicates the adsorbed on the Fe-NH₂TPP surface. The unit of bond lengths are indicated in Å. The green, red, pink, white, and blue represents the carbon, oxygen, nitrogen, hydrogen atoms, and iron transition metal.

Table S1. Calculated electronic parameters of the investigated systems, including the HOMO-LUMO energy gap (E_{H-L} gap), ionization potential (IP), electron affinity (EA), and chemical hardness (η), presented in electron volts (eV).

Structure	НОМО	LUMO	E _{H-L} gap	IP	EA	η
TPP	-4.90	-2.21	2.69	4.90	2.21	1.35
Fe-TPP	-4.98	-2.68	2.30	4.98	2.68	1.15
OHTPP	-4.74	-2.12	2.62	4.74	2.12	1.31
Fe-OHTPP	-4.82	-2.59	2.23	4.82	2.59	1.12
NH_2TPP	-4.41	-1.86	2.55	4.41	1.86	1.28
Fe-NH ₂ TPP	-4.50	-2.35	2.15	4.50	2.35	1.08