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Figures

Figure S1: Confocal image of cells cultured on an equilateral triangle-patterned substrate. The image was captured
from a fixed sample grown for 48 hours post-seeding. The sample is stained for actin (Rhodamine Phalloidin) and
nuclei (DAPI). Each triangle edge measures 1800 µm. The z-scale bar is inverted. An enhanced view of the inset
highlights the height variation between the patterned region and the substrate. A cross-section along the yellow line,
color-coded to represent height variations, is also displayed.
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Figure S2: (A) Representative example of a splay deformation, with two orientations shown at radial distances of
130 µm and 325 µm for deformations observed at a 90◦ vertex, located at the lower left corner of each image.
The red channel shows phase contrast imaging, while the blue channel displays fluorescence imaging of cell nuclei
stained with NucBlue LiveCell Stain for enhanced visualization. (B) Plot of the function {r̂ · n̂}2 vs. Ω for the splay
deformation shown in A. (C) Example of an “imperfect´´ splay deformation at radial distances of 130 µm and 325
µm, also observed at a 90◦ vertex. (D) Plot of {r̂ · n̂}2 vs. Ω for the deformation shown in C, which deviates from
the expected splay trend but is still recognized as splay according to our categorization rule. (Scale Bar: 100 µm)

Wedge angle θ Number of data points
1. π/6 7
2. π/4 28
3. π/3 79
4. π/2 21
5. 2π/3 18
6. 5π/6 16

Table 1: Statistics of different data points for various values of wedge angle (θ )
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Figure S3: Example of (A) splay (B) splay-bend (C) bend-splay (D) bend deformation that is observed in the
experiments at 90◦ vertex, positioned at the left bottom corner of each image. The red channel is the phase contrast
imaging and the blue channel is the fluorescence imaging of cell nuclei stained with NucBlue LiveCell Stain for
better visualization.(Scale Bar: 100 µm. (E){r̂ · n̂}2 vs Ω for two experimental cases with splay to bend (blue) and
bend to splay (red) is observed. The color intensity goes from light to dark both transitions bend to splay (red) and
splay to bend (blue) as the distance from the vertex is increased from 65µm to 325µm. (F) Fraction of observed
splay and bend deformations as a function of the wedge angle θ (number of samples detailed in SI Table 1). Red
columns are for pure splay deformation, light red for splay-to-bend transition, light blue for bend-to-splay and blue
for pure bend deformation.
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Figure S4: Representative plots of {r̂ · n̂}2 versus Ω for deformations at θ = 2π

3 , measured at a radial distance of 325
µm. The evolution over time from 24 to 54 hours is indicated by the color gradient. (A) Example showing bend-like
deformations with significant noise at early timepoints. (B) Example with clear emergence of bend deformations
from the beginning. (C) A less commonly observed splay configuration, appearing at higher density and accompa-
nied by early-time noise.

Figure S5: Reconstructions of Splay (left, red) and Bend (right, blue) director field near a corner with amplitude
π/2 and planar alignment on the edges. The central panel shows the values of (r̂.n̂)2 for the two calculated director
fields.
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Figure S6: Measured difference between the calculated director field and the experimental observations. θexpt is the
orientation of the director averaged over different experimental realizations for a 90◦ wedge, for pure splay and pure
bend case. θideal is the theoretical director orientation for splay and bend deformation. In the figure the distribution of
the difference between the experimental θexpt and the theoretical θideal for splay (red) and bend (blue) deformations
is plotted as a function of the cosine square of θideal −θexpt
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Experiments

Planar anchoring measurements

The orientation field was extracted using OrientationJ from phase contrast microscopy images. For each re-
alization, data were recorded in a region extending 30 µm inward from each edge of the triangular confinement.
Measurements were taken both across different alignment angles and, for selected cases, as a function of time. To
quantify alignment relative to the boundary, the local orientation at each point was referenced to the corresponding
edge orientation and normalized. As an example, for right angled triangle (θ = π

2 ), the horizontal edge was defined
as the zero-angle reference, and the orientation of points near the perpendicular edge was corrected by subtracting
π

2 . This results for images taken 48hr after is shown in the Fig.2C.

Theory

Splay and bend

In the Fig.2C in the main text the director field has strong planar anchoring with the edges of the triangle, and
since the cells are arranged in a monolayer, the nematic director is confined to the xy plane. We can thus describe
the nematic director as a function of the polar angle φ as nx = cosφ , ny = sinφ , and nz = 0 from [1;2].

To describe the director orientation near the corners, we use the analytical form from [3]

φ = sα + c (Eq.1)

where α = tan−1(y/x) and c is constant. The director field for the splay deformation, characterized by planar
anchoring, can be conceptualized as a fraction of a +1 topological defect, with the angle going from 0 to θ (wedge
angle). Therefore s = 1 and c = 0 as per reference [3]. By inserting these values into (Eq.1) and converting into
cylindrical coordinates φ and r we get a director field given by (Eq.2) for splay deformation near a corner. For bend-
like deformation, the liquid crystal molecules exhibit planar anchoring adjacent to the walls. The change occurs in
between the walls, effectively shifting from radial alignment near the walls to azimuthal alignment in the middle.
Therefore given the constraints we use the director orientation in (Eq.3).

n̂splay = r̂+0φ̂ (Eq.2)

n̂bend = cos
(

π

θ
φ

)
r̂− sin

(
π

θ
φ

)
φ̂ (Eq.3)

The director is plotted in Fig.S5 where we see the theoretical directors of the splay and bend plotted along
with the analysis of how the (r̂ · n̂)2 varies as a function of the angle Ω formed between the x-axis and the versor
r̂. We compare the director shown in Fig.S5 with the director measured experimentally and Fig.S6 shows that the
difference is small for both bend and splay configurations.

Energy Calculation

The 3D Frank-Oseen energy is defined by (Eq.4), [1;2], where k1, k2, and k3 denote the elastic constants for splay,
twist, and bend, respectively, and n̂ represents the director field. As the cell monolayer is restricted to xy plane
the twist energy term (characterized by k2) from the (Eq.4) can be discarded. Moreover the deformations can be
considered only 2D, therefore both divergence and curl would be calculated only in 2D. This generates the free
energy density per area in (Eq.5) where the elastic constants are given by k∗1 and k∗3 which are the 2D splay and bend
elastic constants. For simplicity, from now on we call them k1 and k3 even if they are defined in 2D.

fFO =
1
2

k1(∇ · n̂)2 +
1
2

k2(n̂ ·∇× n̂)2 +
1
2

k3(n̂× (∇× n̂))2 (Eq.4)
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fFO2D =
1
2

k∗1(∇ · n̂)2 +
1
2

k∗3(n̂× (∇× n̂))2 (Eq.5)

Integrating the Frank-Oseen energy over the wedge area and including the line anchoring term (analog to the
surface anchoring energy) we get the total energy of the system as (Eq.6), where W is anchoring energy per unit
length, l is the length of the wedge line, and τ̂ being the tangent vector to the edge.

Etot =
∫ l

0

∫
θ

0
fFO r dφ dr−2

∫ l

0
W (n̂ · τ̂)2 dl (Eq.6)

As seen from Fig.2.C in the main text, the probability of cells aligning within 10 degrees of the wedge line is high
for varying wedge angle. Thus we can imagine the contribution of the line anchoring energy to be zero. We know
from (Eq.2) the functional form of n̂ for splay deformation. If we assume the wedge angle to be θ and substitute it
in (Eq.4) we get

fFOsplay =
1
2

k1
1
r2 (Eq.7)

because the bend term is zero. Substituting results of (Eq.7) in (Eq.6) we get the total energy for pure splay
deformation as

Etotsplay =
∫ l

ε

∫
θ

0

1
2

k1
1
r2 r dφ dr

=
∫ l

ε

1
2

k1
1
r

θ dr+Ecs

=
1
2

k1θ ln
l
ε
+Ecs (Eq.8)

where ε is defect core, necessary to prevent the integral from diverging in zero and Ecs is the energy of the defect
core. From (Eq.8) one can see that the energy for splay is a linear function of θ . One can do the same with the bend
deformation case discussed before in (Eq.3) with m = π

θ
and substitute in (Eq.4)

fFObend =
1
2

k1
cos2 mφ

r2 (1−m)2 +
1
2

k3
sin2 mφ

r2 (1−m)2 (Eq.9)

An important difference in this case as compared to the pure splay deformation is the presence of a component
of energy coming from both splay and bend energy. Therefore the total energy from bend deformation is given by

Etotbend =
∫ l

ε

∫
θ

0

[
1
2

k1
cos2 mφ

r2 (1−m)2 +
1
2

k3
sin2 mφ

r2 (1−m)2
]

r dφ dr

=
1
2
(1−m)2

∫ l

ε

[
k1

1
r

π

2m
+ k3

1
r

π

2m

]
dr+Ecb

=
(1−m)2

2
(k1 + k3)

π

2m
ln

l
ε
+Ecb

= (1− π

θ
)2 θ

4
(k1 + k3) ln

l
ε
+Ecb (Eq.10)

as m = π/θ . Here Ecb represents the core energy of the bend defect, which we assume is small and equal to Ecs. It is
of interest to note that the role of θ is not linear as seen with (Eq.8). We now have sufficient machinery to compare
the two different deformations for the same angle.
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Energy-Probability

The energy for the deformations are derived in (Eq.8), and (Eq.10) for splay and bend respectively. We have
seen from the experimental results, that for the case of fibronectin coated cell substrate shown in Fig.2E in the main
paper, the probability to splay or bend is equal for the case when θ = π

2 . This suggests that the energy associated to
splay and bend is equal, thus allowing us to equate (Eq.8) and (Eq.10) at θ = π

2

Esplay = Ebend when θ =
π

2
k1

2
π

2
ln

l
ε
= (1− π

π

2
)2 π

2
(k1 + k3)

4
ln

l
ε

k1 = k3 (Eq.11)

Elastic Anisotropy

The above condition from (Eq.11) is valid for when the energy of splay and bend deformation are equal at θ = π

2 ,
what happens if that’s not the case? We can still get the ratio between the elastic constants, using (Eq.8), and (Eq.10),
and getting it as a function of θe, i.e. the arbitrary angle at which the two energy are the same.

Esplay(θe) = Ebend(θe)

k1

2
θ ln

l
ε
= (1− π

θ
)2

θ
(k1 + k3)

4
ln

l
ε

k1

k3
=

(1− π

θ
)2

(1− π2

θ 2 +2 π

θ
)

(Eq.12)

the plot for this function vs θe is shown in Fig.3C of the main paper.
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