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Ⅰ Details of the ternary Flory-Huggins theory 

Here we describe how to calculate the free energy change (as well as its entropic and energetic 

contributions) during the liquid-liquid phase separation in the co-nonsolvency effect of homopolymer 

solutions using the ternary Flory-Huggins theory. 

For the multi-chain system, in the framework of the Flory-Huggins theory, we may write the 

Helmholtz mixing free energy density for a homogeneous polymer solution in binary mixtures of S- 

and O-solvents as 

 (1 ) (1 )P
P S S P S P S PS P Sf ln ln ln

N


          = + + − − − − +  (1) 

where kB is the Boltzmann constant and T is the absolute temperature, P and S are the concentrations 

of polymer segments and S-solvent respectively, the concentration of O-solvent is thus O=1−P−S, 

N is the degree of polymerization of polymer, ( 2) /PS PS Bz k T = − is the Flory-Huggins parameter 

between monomer and S-solvent with εPS denoting the energy for each S-solvent/monomer contact and 

z=18 the lattice coordinate number for the single-site bond fluctuation model. Finally, the volumes of 

each monomer and each solvent molecular are set to be 1. The first three terms in Eq. (1) represent the 

mixing entropy and the last term denotes the enthalpy attraction between monomer and S-solvent. The 
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competition between these two contributions determines whether a solution remains homogeneous or 

undergoes separation into coexisting phases. With Eq. (1), we may calculate the exchange chemical 

potential of polymer per monomer basis as 

 
1

(1 ) 1P P
P S PS P

B

ln
ln

k T N

 
   

+
= − − − − +  (2) 

and the exchange chemical potential of S-solvent as 

 (1 )S
S P S PS P
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ln ln
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
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The osmotic pressure is then given by 

 (1 )P
P P S PS P Sln

N


       = − − − − +  (4) 

For appropriate parameters, a homopolymer solution may separate into an S-solvent-dilute phase 

(Phase I: with superscript I) and an S-solvent-concentrated phase (with superscript II). Denoting the 

concentration of species i in these two phases by i
I and i

II respectively, we can calculate the 

concentration by numerically solving the phase equilibrium conditions, ( , ) ( , )P P S P P S     = ⅡⅠ Ⅰ Ⅱ  ,

( , ) ( , )S P S S P S     = ⅡⅠ Ⅰ Ⅱ and ( , ) ( , )P S P S    = ⅡⅠ Ⅰ Ⅱ . We can use this method to construct the binodal in 

the polymer-S-solvent phase diagram. 

On the other hand, if a system with initial concentrations of polymer and S-solvent being P and 

S is located in the phase separated region, it will separate into an S-solvent-dilute phase and a 

coexisting S-solvent-concentrated phase. Denoting the volume fraction of the S-solvent-dilute phase 

by x, the mass conservation law requires that (1 ) i i ix x  +− =Ⅱ Ⅰ  with the concentrations of the i-th 

component in each of these two phases being i
I and i

II respectively. The difference in the Helmholtz 

free energy density is thus 

 ( , ) (1 ) ( , ) ( , )P S P S P Sf xf x f f      = + − −ⅡⅡⅠ Ⅰ  (5) 

with f being given by Eq. (1). 

Likewise, the energetic and entropic contributions in f are given respectively by 



 ( , ) (1 ) ( , ) ( , )P S P S P Su xu x u u      = + − −ⅡⅡⅠ Ⅰ  (6) 

and 

 ( , ) (1 ) ( , ) ( , )P S P S P Ss xs x s s      = + − −ⅡⅡⅠ Ⅰ  (7) 

with u and s are given respectively by 

 PS P Su   =  (8) 

and 

 / (1 ) (1 )P
B P S S P S P Ss k ln ln ln

N


      = + + − − − −  (9) 

To further evaluate the relative contributions of binary solvents in s, we also calculate the 

difference of mixing entropy density purely due to the binary solvents s in the same way as s with

/ (1 ) (1 )B S S P S P Ss k ln ln      = + − − − −  by ignoring the first term in Eq. (9). 
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Figure S1 (a-c) The morphological phase diagrams of multi-chain systems. (a-b) For diblock 

copolymers, (a) in the CS−P plane at εBS = −2 and (b) in the CS−εBS plane at P = 0.01. DC, SM, QV, 

V, TQV, and CM represent dispersed chains, spherical micelles, quasi-vesicles, vesicles, tubular quasi-

vesicles, and compound micelles, respectively. (c) For homopolymers as a function of CS at CP = 0.02 

and εHS = −2.0. (d) The specific heat curve in the space of HS for multi-chain homopolymer systems 

with chain length N = 10, and CS = 0.1, in the calculation, the effective temperature T’ is related to HS 

with T’ = 1/HS. 

 

Figure S2 Typical radial density profiles for homopolymer systems with CS = 0.2 and εHS = −2.0 of (a) 

multi-chains (CP = 0.02) and (b) a single-chain.  



 

Figure S3 The CS dependence of the average contact numbers of each B(H)-segment with all species 

in different systems with εBS = εHS = −2.0. (a, b) Copolymer with fA = 0.2 and (c, d) homopolymer. (a, 

c) multi-chains (CP = 0.02) and (b, d) a single-chain. 

 

Figure S4 The CS dependence of the normalized chain mean-square radius of gyration in single-chain 

homopolymer systems with N = 10 and N = 30. 


