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S1. Nanorod and gel properties 13 

In the hd-protocol of varying the length and diameter of the rod-like nanoparticle (RNP), the 14 

hydrodynamic diameter dH is kept constant (Eq. 1 of the main text). Most of the simulations are 15 

based on dH = 160 nm. The dimensions of the RNP at different aspect ratios is given in Table S1 16 

below. 17 

Table S1. Nanorod dimensions for different aspect ratio values when dH = 160 nm 18 

Aspect ratio (λ) Diameter (nm) Length (nm) 

1 138.52 138.52 

2 104.80 209.60 

3 85.95 257.87 

4 73.62 294.51 

5 64.83 324.17 

For a random network of straight thin fibers, Ogston1 formulated the pore size distribution in terms 19 

of the radii of the largest spheres that can fit into the pores: 20 
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where g(r) is the distribution function, r is the pore radius, ν is the number of fibers per unit volume, 21 

and Lf is the half-length of the fibers. Fig. S1 shows the variation of g(r) as a function of r when 22 

2νLf  = 16 × 1013 m-2 and 2Lf = 1 µm (See Table 1).  23 
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 24 

Fig. S1 Variation of g(r) as a function of r for the gel specified in Table 1. 25 

S2. Discretized governing equations:  26 

Following Löwen,2 we develop the finite-difference schemes for temporal discretization of our 27 

governing equations, Eqs. (2–4) in the main text. To advance the parallel component of R in time, 28 

Eq. (2) is discretized as 29 
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where Δt is the time step, and R is a random displacement due to collisions with solvent 30 

molecules. It is a Gaussian-distributed random number with zero mean, and variance 31 

 
2

02R D t   . 
(S3) 

Here,    denotes an average over a Gaussian distribution. 32 

The perpendicular component, on the other hand, diffuses with the perpendicular diffusion 33 

constant 0D  : 34 
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where again 
1R  and 

2R   are Gaussian random displacements with zero mean and variance 35 

02D t  . After 
R and R  are evaluated at the new time, the particle position is updated as 36 

 R R R . 37 

Finally, the orientation of the RNP long axis diffuses as 38 
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where  ext tT  is the external torque acting on the rod and x1, x2 are Gaussian random numbers 39 

with zero mean and variance 02 rD t . After each step, the orientation vector is rescaled to have 40 

unit norm.  41 

S3. Discretization of rod-like nanoparticles in adhesive interaction 42 

To ensure that our results are not influenced by the discretization of the RNP, we examine three 43 

cases: discretizing the RNP length into segments of 5 nm, 10 nm (our baseline case), and 20 nm. 44 

To maintain a fair comparison, we keep the total adhesion potential constant, meaning that in cases 45 

with a sparser distribution (e.g., 20 nm), individual adhesion sites will have a higher U0. Fig. S2 46 

illustrates the variation in translational diffusivity as a function of aspect ratio. As shown, all cases 47 

exhibit a similar non-monotonic trend, confirming that the discretization of adhesion sites does not 48 

significantly affect the results. The difference between the 3 cases is more noticeable for rods with 49 

smaller λ. This is because we have fewer integration points on these short and thick RNPs, e.g., 50 

only 7 points for λ = 1 at U0 = 4kBT. 51 

 52 

Fig. S2 Effect of RNP discretization on the translational diffusivity Dt with purely adhesive 53 

interaction. The nominal separation between neighboring adhesion sites on the fibers is r0 = 54 

200 nm. The RNP hydrodynamic diameter is dH = 160 nm.  55 
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S4. Statistical analysis:  56 

Our BD simulation tracks the trajectory of P particles, each governed by the Langevin equations 57 

(Eqs. 2–4) and starting from a randomly chosen location and orientation. For each of the P 58 

individual trajectories, we use internal sampling3 over all pairs of points as a function of the time 59 

interval t:   60 
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where Q is the number of all pairs separated by t, tk = (k-1)Δt is the starting time of the kth time 62 

step and the starting time of the kth pair, and  2R t  is the single-particle mean squared 63 

displacement (MSD). Moreover, we ensemble-average over all the P non-interacting trajectories: 64 
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to compute the ensemble MSD  2R t  (we will simply call it MSD). Finally, the long-time 66 

translational diffusion coefficient, DL
t, is calculated as:4 67 
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The long-time limit is reached when the ensemble-averaged MSD varies linearly with time. We 69 

have compared the above method with an ensemble averaging without internal sampling and found 70 

that the internal sampling effectively reduced the statistical noise by extracting more information 71 

from each particle trajectory.5 In addition, we have validated our numerical scheme against 72 

analytical formulas of the diffusivity for free-diffusion6 and numerical simulations of rod-rod 73 

interaction.7 74 

The long-time orientational self-diffusion coefficient DL
r, on the other hand, is defined via the 75 

long-time limit of a diffusive process on the unit sphere:2 76 
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S5. Distinguishing the meandering and directional modes 78 

To quantitatively distinguish the meandering and directional modes of diffusion, and to determine 79 

their respective prevalence, we have used two different methods to characterize the points on the 80 

trajectories of the RNP centroid. 81 

(a) Cluster analysis based on the Density-Based Spatial Clustering of Applications with Noise 82 

(DBSCAN) algorithm.8 DBSCAN divides the trajectory into “clusters” of closely positioned 83 

points, and “noise” consisting of points not belonging to any cluster. In this algorithm, data points 84 

are classified into three categories: (i) core points, which are surrounded by a minimum number of 85 

neighboring points (minPts) within a specified radius (eps), (ii) border points, which are adjacent 86 

to core points but do not have enough neighbors to be core points themselves, and (iii) noise points, 87 

which do not belong to any cluster. We interpret the clusters formed by core and border points as 88 

meandering episodes, while the noise points correspond to directional episodes. For this analysis, 89 

we set eps = 100 nm and minPts = 1000. 90 

(b) Voronoi tessellation. For the set of points on a trajectory, e.g., those of Fig. 5(b), we divide the 91 

spatial domain into interlocking cells "centered" on each trajectory point. More precisely, each 92 

Voronoi cell contains all the spatial points that are closer to its trajectory point than to any other 93 

trajectory points. Voronoi analysis is particularly useful for quantifying the available space around 94 

each point, as the size and shape of each cell reflect the local density and arrangement of the 95 

points.9 Unlike the DBSCAN method, which requires two user-defined parameters, Voronoi 96 

tessellation requires no manual input and yields a unique, parameter-free result. Although 97 

originally introduced to study crystalline structures, Voronoi analysis has been widely applied to 98 

characterize the local geometry in soft matter systems as well. Here, we employed the OVITO 99 

software package to compute the Voronoi tessellation.10  100 

Fig. S3 illustrates four representative trajectories analyzed with DBSCAN and Voronoi 101 

tessellation. The clusters identified by DBSCAN (top panel), shown in red, correspond to the 102 

meandering phase. In contrast, the noise points, displayed in blue and generally appearing as 103 

thinner, narrower branches, represent the directional mode. The Voronoi analysis (bottom panel) 104 

produces darker regions with denser and smaller cells that correspond to the meandering mode, 105 

and lighter regions with more sparse and larger cells that correspond to the directional mode. Thus, 106 

the two modes of diffusion can be identified and distinguished using either methods. Fig. S3 shows 107 

that the two yield consistent outcomes. In DBSCAN, the distinction between clusters and outliers 108 

is made somewhat arbitrarily by the parameters eps and minPts. In Voronoi analysis, similarly, 109 

one would need to specify a threshold cell volume or density to demarcate the two modes of 110 

diffusion. The exact boundary between the modes is subject to such parameter choices. 111 

Once we identify the meandering and directional episodes using either method, we can measure 112 

the residence time of the RNP in each mode. Results generally show that the meandering mode 113 

has a much longer residence time. Counting the duration of the multiple episodes in multiple 114 

trajectories, we find that on average, the meandering mode is about three times as prevalent as the 115 

directional mode, occupying roughly 75% of the time. This supports the argument that the 116 

diffusing RNP experiences a skewed pore-size distribution much in favor of the larger pores. 117 
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 118 

Fig. S3 Four representative trajectories for analyzing the two modes of diffusion. (a-d) Clusters 119 

(red) and noise points (blue) identified by DBSCAN. (e-h) The Voronoi cells around the trajectory 120 

points. Darker areas correspond to small cell volume and higher cell density. 121 

 122 

S6. Parametric study of the crowdedness number N(t) 123 

In the main text, the crowdedness number N(t) is computed from Eq. (17). To verify that the 124 

observed trend in N(t) does not depend on the parameters nf (number of discrete segments on each 125 

fiber of the gel network), nr (number of discrete segments on the RNP), and le (cutoff distance for 126 

counting neighboring segments), we conduct numerical experiments by varying these parameters 127 

one at a time. Fig. S4 illustrates the variation of N(t) for different parameter sets. As expected, the 128 

pairwise neighbor counts N is higher for larger nf  (Fig. S4(a) and (b)) and larger le (Fig. S4(e) and 129 

(f)). With increasing nr, the increase in neighbor counts is minimal (Fig. S4(c) and (d)). This is 130 

because in the definition of N in Eq. (17), one counts each fiber segment only once. For newly 131 

inserted RNP segments, there would be few fiber segments available to form new pairs and to add 132 

to N. Thus, N saturates quickly with increasing nr. 133 

All these cases bear out the same trend as shown by Fig. 6(c) of the main text: the surrounding 134 

fiber network is denser and more crowded during the directional diffusion than the meandering 135 

diffusion. 136 

 137 

 138 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Fig. S4 Parametric studies of N(t). The base parameters are nr = 3, nf = 100, and le = 200 nm. Each 139 

subfigure shows the effect of varying one parameter: (a) nf = 50, (b) nf = 200, (c) nr = 6, (d) nr = 9, 140 

(e) le = 150 nm, and (f) le = 250 nm.  141 
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