Electronic Supporting Information

Counter-intuitive Photo-Modulation of the Aqueous Phase Behavior of Azo Dye-Functionalized Polyacrylamides

René Steinbrecher^a, Peiran Zhang^b, Christine M. Papadakis^b, Peter Müller-Buschbaum^b, Andreas H. Taubert^a and André Laschewsky^{*a,c}

- a University of Potsdam, Institute of Chemistry, Potsdam-Golm, Germany.
- b Technical University of Munich, TUM School of Natural Sciences, Physics Department, Garching, Germany.
- c Fraunhofer Institute for Applied Polymer Research IAP, Potsdam-Golm, Germany.

Calculation of Half-life

The decay of the photo-stationary states follows 1^{st} order kinetics. Accordingly, the half-life t_{2} can be calculated from the slope of the plotted absorbance or the normalized ¹H NMR signals, respectively as a function of time, using equation (1).

$$t_{\frac{1}{2}} = \frac{\ln(2)}{slope} \tag{1}$$

For the monomer AzBnAm **3**, the content of the *Z*-state is determined from the normalized ¹H NMR spectra. Figure S1 shows the linearized decay as well as the function of the linear regression.

Figure S1: Linearized decay of the *z*-isomer fraction of monomer AzBnAm **3** in DMSO solution after irradiation at 365 nm for 15 min from the ¹H NMR spectra in DMSO-d6 at 20 °C.

Spectra

Figure S2: ¹H NMR spectrum of monomer AzBnAm **3** in deuterated dimethylsulfoxide DMSO-d6.

Figure S3: ¹³C NMR spectrum of monomer AzBnAm 3 in DMSO-d6.

Figure S4: ¹H NMR spectrum of monomer MAm 6 in chloroform CDCl₃.

Figure S5: ¹³C NMR spectrum of monomer MAm 6 in CDCl₃.

Figure S6: ¹H NMR spectrum of monomer EAm **7** in DMSO-d6.

Figure S7: ¹³C NMR spectrum of monomer NEAm 7 in DMSO-d6.

Figure S8: ¹H NMR spectrum of monomer AzBnAm **3** in DMSO-d6 after irradiation at 365 nm for 15 min. The integrals of the corresponding *E* and *Z* states are normalized to calculate the ratio of *E*: *Z* (21:79).

Figure S9: ¹H NMR spectrum of monomer AzBnAm **3** in DMSO-d6 after irradiation at 525 nm for 15 min. The integrals of the corresponding *E* and *Z* states are normalized to calculate the ratio of *E*: *Z* (75:25).

Figure S10: ¹H NMR of homopolymer p(EAm) in D₂O.

Figure S11: ¹H NMR of copolymer p(EAm-*co*-AzBnAm_{1.0}) in D₂O.

Figure S12: ¹H NMR of copolymer p(EAm-*co*-AzBnAm_{5.0}) in D₂O.

Figure S13: ¹H NMR of p(MAm) in methanol d4, CD₃OD.

Figure S14: ¹H NMR of copolymer p(MAm-*co*-AzBnAm_{4.5}) in CD₃OD.

Figure S15: ¹H NMR of copolymer p(MAm-*co*-AzBnAm_{8.0}) in CD₃OD.

Figure S16: ¹H NMR of copolymer p(MAm-*co*-AzBnAm_{11.5}) in CD₃OD.

Figure S17: ¹H NMR of p(DMAm) in D_2O .

Figure S18: ¹H NMR of copolymer p(DMAm-co-AzBnAm_{2.0}) in CD₃OD.

Figure S19: ¹H NMR of copolymer p(DMAm-*co*-AzBnAm_{5.0}) in CD₃OD.

Figure S20: ¹H NMR of copolymer p(DMAm-co-AzBnAm_{9.0}) in CD₃OD.

Figure S21: ¹H NMR of copolymer p(DMAm-*co*-AzBnAm_{11.5}) in CD₃OD.

Figure S22: ¹H NMR of copolymer p(DMAm-co-AzBnAm_{15.5}) in CD₃OD.

Figure S23: Turbidity studies of the $p(MAm-co-AzBnAm_x)$ copolymer series in water (c = $1g\cdot L^{-1}$) as function of the temperature and of the state of the photo-isomerization, heating rate 0.5 K min⁻¹. Green symbols indicate solutions equilibrated in the dark (all in *E*-state), red symbols indicate solutions in the photo-stationary state after 15 min of irradiation by 365 nm light, containing a majority of the *Z*-isomer.

Figure S24: Turbidity studies of the $p(EAm-co-AzBnAm_x)$ copolymer series in water (c = $1g\cdot L^{-1}$) as function of the temperature and of the state of the photo-isomerization, heating rate 0.5 K min⁻¹. Green symbols indicate solutions equilibrated in the dark (all in *E*-state), red symbols indicate solutions in the photo-stationary state after 15 min of irradiation by 365 nm light, containing a majority of the *Z*-isomer.

Figure S25: Turbidity studies of the p(DMAm-*co*-AzBnAm) copolymer series in water ($c = 1g \cdot L^{-1}$) as function of the temperature and of the state of the photo-isomerization, heating rate 0.5 K min⁻¹. Green symbols indicate solutions equilibrated in the dark (all in *E*-state), red symbols indicate solutions in the photo-stationary state after 15 min of irradiation by 365 nm light, containing a majority of the *Z*-isomer.

Figure S26: UV-Vis spectra of the of the homopolymers p(DMAm) (red), p(EAm) (blue) and p(MAm) (green) in water (1 g·L⁻¹), showing no absorption in the wavelength range >250 nm in which the azobenzene monomer used (AzBnAm) is absorbing.

Figure S27: UV-Vis spectra of monomer AzBnAm **3** in methanol ($c = 0.005 \text{ g} \cdot \text{L}^{-1}$) before (green) and after irradiation (red) at 365 nm for 15 min.

Figure S28: Selected intensity autocorrelation functions $G_2(\tau)$ -1 of aqueous solutions of copolymers $p(MAm-co-AzBnAm_x)$, concentration: $1 \text{ g} \cdot L^{-1}$.

Top left:	<i>E</i> -p(MAm- <i>co</i> -AzBnAm ₈),
bottom left:	<i>E</i> –p(MAm- <i>co</i> -AzBnAm _{11.5}),

top right: Z-p(MAm-co-AzBnAm₈), bottom right: Z-p(MAm-co-AzBnAm_{11.5}).