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A. DISPLACEMENT FLUCTUATIONS IN A TWO-DIMENSIONAL CONTINUOUS MEDIUM

We consider the following equation of motion

Cu(r,t) = — g A2’ D (r — v u(r',t) + A(r, t) (A1)

where w(r,t) describes the elastic deformation from position r, ¢ is a friction coefficient, D is a dynamical matrix
[1] describing elasticity, and A a stochastic term.
Using the Fourier transform in space and time of the displacement field (2)

1 i ig-r+iw
U(r7t):W R2 dzqeq (q7t 27T /]%2 d2 /dweq - tU(q7 )’ (Az)

we write (A1) in Fourier space
. ~el, |~ -
iw(U(q,w) = =D (qQ)U(q,w) + A(g,w). (A3)

-l
We assume that the Fourier transform of the dynamical matrix Qe (q) can be decomposed as follows [2]

D (@)U(q,w) = la* [(B+ 1)U (g.w) + nU1(q,)] (A4)

where ¢ = q/|q]|, ﬁH(q,w) = (U(q,w) -q)q and Tjj_(q,w) = U(q,t) — ﬁH(q,w) are respectively the longitudinal and
transverse displacements in Fourier space, and B and u are respectively the bulk and shear moduli. We can thus now

write
(D)0 (Ay(@.w)- Ay(qw)) (Ai(gw) Auld.w)) )
q,w) - q,w *> = T A + = - 5
liwC +[q*(B + w)][-iw' ¢+ |g'P(B+ )] [iw¢ + |qPp][-iw'¢ + ']
where [X” = (A -g)q and AL =A- AH are respectively the longitudinal and transverse stochastic terms in Fourier

space. We assume that the stochastic term is either the divergence of a tensor field uncorrelated in space, or is a
vector field uncorrelated in space, with correlations respectively

A(r,t) - A ) = —02a? e VT 25 (r — 1), (A6a)
A(r,t) - A 1)) = fPa2e 11T §(r — 7', (A6D)

where o is an energy scale, f a force scale, a a coarse-graining length scale, and 7 a persistence time. Using the
following identities

/ dt e @~ = 27 §(w — W) (ATa)
R
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we write these correlations in Fourier space

(Al@.w)-A@.w)) = 0P 2210 50— ) a?(a - ), (Asa)
(Alg.w) Alg,)) = @rP 2 5w~ o) asla - a) (A8D)

where we have taken ¢ = ¢’ and w = ', outside of the Dirac delta functions §(q — ¢’) and 0(w — w’), for simplicity.
We further assume by isotropy

(Alg.w)-Alg.w)). (49)

N =

(Ay(g.w)-Ay(qw)) = (Ailg.w) - AL(g'w))) =
We thus obtain the following space and time Fourier fluctuations

30°7|q|* 6(w — ') a*6(q — q')
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Using the following identities
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we obtain the equal-time Fourier fluctuations
mo’7|q|* a®d(q — ') mo’7lq|* a*d(q — ')
u(q,t) -u(q,t)*) =27 T Al2a
a0 8 0) = 2B i+ 1aP B + ] T aPulC + laPrr] (A2
_ _ mf?1a*5(q — q') mf?1a*5(q — q')
u(q,t) -u(q,t)*) =27 T , A12b
(a0 @ 0) =2+ 1aPB + ] T alPule + laPar (A120)
which correspond to (8) given the longitudinal and transversal correlation length scales § = /(B + pu)7/¢ and

§L=/ut/C.

B. DISPLACEMENT FLUCTUATIONS IN A TWO-DIMENSIONAL TRIANGULAR LATTICE

We consider a periodic triangular lattice in two dimensions, see Fig. B1, where e, = a(cos((ow — 1)7/3), sin((a —
1)7/3)). We denote N the total number of sites — of the order of /N in each dimension —, r{ the reference lattice
position of particle i € {1,..., N}, and w; = r; — r? its displacement from this lattice position. We define in this
lattice the discrete divergence operator [3] which to a quantity v;_,, defined on links ¢ — « associates

3
A v, = Z[’Ui—wz - 'v(ifa)—mz] (BIS)
a=1
defined on sites i, and the Laplacian operator V2 which to a quantity w; defined on sites i associates

Viwi = > [Wita + Wi_a — 2w;] (B14)
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FIG. B1. Notations within the triangular lattice.

also defined on sites 3.

We introduce the following overdamped equation of motion

Cui(t) — YV2; = EV2u; + Xi(t)

(B15)
where ¢ is a friction coefficient, v a pair friction coefficient, k a spring constant, and X;(t) is the stochastic active
term.

We define the discrete space Fourier transform

N (0]
Vg =) e iy, (B16a)
i=1
1 = 0
v; = N e“I'T'i, ﬁq; (Blﬁb)
m,n=0
q=22(m,n)
with the following orthogonality relation
N . 0
D e = NGy . (B17)
i=1
We write (B15) in Fourier space
WU, (w) + iwQ(q)* U, (w) = —Q(q)*kUy(w) + Ag(w) (B18)
where we have introduced the kernel
S 3
2 2 2
=2 1 —cos(q- e, = a”. B19
Q(q) ;( (g-e2) = 5lal (B19)

We thus obtain the following space and time Fourier fluctuations

U, (w) Uy ()*) = (Rq) - Ay () B20
< (@) Ug (&) >_ [iw(¢ + Q(9)*7) + Q(@)*K][-iw' (¢ + Q(q')*7) + Q(g')*k] (b20)




B.1. Active stresses

We first provide the derivation for a fluctuating stress with finite-time correlations, for simplicity in the absence of
pair friction. We have

() =V-a;, (B21a)
(Gisa(t) - oj5pt) = 02a2e 01T 5,,6,50(t — t'), (B21b)
which read in Fourier space
~ ~ " 202a727Q(q)?
<Aq(w) “Ag (W) > = QWTQT(Q)N%@ (w — w'). (B22)
such that the space and time Fourier fluctuations are
~ ~ . 202a727Q(q)*
(Ot - Oa!)") = 27 e gyt 7 omes Voo 8 =) (B23)
We use (A11) and write the equal-time Fourier fluctuations
o2a=2t 0272 -2
Ug(t) g (t)") = ————5— Ngq = Néq q's B24
all) 8 ) = S Qg M T T T Quap(gar e .

where we have introduced the correlation length & = ay/k7/(. We obtain the same large-wavelength scaling as (B28):
the finite-time correlation of the stress only affects the small-wavelength fluctuations.

B.2. Fluctuation-dissipation and the thermal limit

It is important to compare and contrast our results with those expected in thermal equilibrium. Given the dissipation
term on the Lh.s. of (B15), the second fluctuation-dissipation theorem [4-6] dictates that the stochastic term A;(%)
should have the following decomposition and correlations

Ai(t) =mni(t) + V- g, (B25a)

n:i(t) - m;(t")) = 2kgT1C 65 6(t —t'), (B25b)
(0isa(t) - ajp(t) = 2kpToy §;j0ap 0(t — 1), (B25¢)
(1) - 03 5(E)) = 0 (B25d)

with T'= T} = T5 the bath temperature.
The fluctuations of the driving noise deriving from (B25) are

<Aq(w) Ay (w/)*> = Ak TiCNOq q0(w — w') + ATkp Ty Q(q)2 N g qd(w — w'). (B26)

We refine our expression of the displacement fluctuations

~ ~ ArkpTI(Nbg g0 (w — ') Ak ToyQ(q)?> Ndg.qrd(w — w')
Uy(w) Uy (W) = 29 3.9 , B27
< al) U () > w(C+Q(q)*7)* + Q(@)*'F W ((+Q(q)*7)* + Q(g)*k? (B27)
and take the inverse time Fourier transform using (A11) to compute the equal-time Fourier fluctuations
_ _ s kgT1¢ kgToy
ug(t) - g (t)*) = Nigq +————Nbgq- B28
all) 2 ) = QU@ T QR (2%

We stress here that (|@q(t)|?) remains finite for |g| — 0if and only if 7 = 0 and ¢ # 0. Therefore, it is the competition
between a fluctuating stress (Th # 0) and a particle-wise drag force (¢ # 0) in the absence of a particle-wise fluctuating
force (Th = 0) which damps large-wavelength fluctuations. Moreover, the effect of an additional viscosity-like term
only affects the small-wavelength behaviour.



C. LARGE-DISTANCE SCALING OF THE TRANSLATIONAL ORDER CORRELATION FUNCTION

We consider the local translational order parameter (12)
Ygo,s = €90 (770 (C29)

where g is a reciprocal vector of the lattice, r; = 70 + u; the position of particle i which is displaced of u; from its
lattice position r¥. We write the fluctuations

<wqo,i¢20}j> — <ei40(7’i—rj)> — <equ'(T?—T?)eiq(y(ui—uj)>. (CSO)

We note that for two lattice points 70 and r;) then gqo - (r) — r]) is 0 modulo 27 therefore €90 ("= — 1. We also

define for a random variable X its characteristic function ¢ — (exp(itX)). For a normally distributed random variable
X with zero mean (X) = 0 then

(exp(itX)) = exp (;tQ <X2>) . (C31)

We assume for two distant particles ¢ and j that go - (7; — 7;) is normally distributed — from the linearity of (B15)
and the Gaussian nature of driving noises — and assume from isotropy

((qo - (wi —uy))?) = %\QOF (lwi —u;|*) = |gol? (Juil*) — Iqo|? (wi - u;) (C32)

where we have used (|u;|?) = (Ju;[?) for all i and j in steady state.
As a matter of simplification we use the continuous-space spectrum of displacements (8) to compute the correlations
(lui|?) and (u; - u;). We then write

(Juil?) o i [ [ e tian a0, (C330)
(u; - uj) = (uj - u;) = W /]R2 qu/]Rz d*q’ cos (q-r) —q' - 7)) (u(q,t) - u(q',1)*). (C33b)

such that using (C32)

<(q0 (u; — ) 27r /Rz /]R2 d?q’ [1 — cos ( r)—q- T‘?)] (u(g,t)-a(q',t)*). (C34)

We note that (8) are symmetric by rotation of g. With
A—ro—r , =14l (C35)

we define for all wave vector g the angle ¢ such that g- A = gr cos ¢ where ¢ = |q|. Therefore for any function f(|q|)
we have the following identity

[ Pacosta-a) fal) = [ da [ doqos(arcose) fla) = [ dazeahar) flo). (C36a)
[ @afla) = [ dazeasa). (C36b)
R2 R

where J is the 0-th Bessel function of the first kind.

C.1. Fluctuating stress

Using (8a), (C33), and (C36), we write

2.2 2 2r/a 2r/a
o 0°T?a / q / q
u;|?) = ——— dg ——— + dg —""——~1, C37a
(l) = e l o GA+PE) T ot fi(1+q2€i)] (st

o?r%a? /27r/a qJo(qr) /Qﬂ/a qJo(qr)
wiou) = 2 dg —320Mr) | dg L\ | C37b
< i) 4dm(? [ 21 /L qfﬁ(l‘i‘qQEﬁ) 2 /L qfi(1+q2§i) ( )



where the upper cutoff in the integral translates the fact that the continuous description applies to scales greater than
the coarse-graining scale a, and the lower cutoff corresponds to the system size L. At fixed r we first note that

1

hlar) =1 1 (%)2 (C38)

with I" the Euler gamma function. It follows that all integrands in (C37) converge to finite values for ¢ — 0 therefore
all integrals converge for L — oo and we thus take this limit for the derivation below. To compute (C37a) we use the
following identity

/%/ad _ 1 L1y (277)2g (C39)
0 Trge ~ 22 ® a?
and write
2,2 2
(Juil?) = % “4 log (1+ (2m)2(¢)/a)?) + élog (1+em%e /a)Z)] = (u?)7_. (C40)

To compute (C37b) we use the following inequality

|Jo(gqr)] < \/1q7 (C41)

to bound the following integral

/%/ad qJo(qr)
0

1 27 /a \/a
< — d —0 C42
97 2| S ﬁ/o q (C42)

1+ q2§2 r—00

where the latter limit derives from the fact that the integral is finite, which implies

r—00

Therefore, using (C30), (C31), (C32), (C40), and (C43), we obtain

Waias) = @m(QMf@ﬂ;) (C44)

|T?77'_(].’\~>oo

C.2. Fluctuating force

Using (8b), (C33), (C34), and (C36), we write

2y f272a2 27 /a q 27 /a q

(i) = Tz [/Qﬂ/L N ) *’/CW/L YeEaree) | (C4e)
Loy fPRatlgol? | R g1 — Jo(ar)) rle (1= Jo(gr))

(o - (uj —uy))?) = pore V%/L dq PE0 T 2) +/M/L Y i e | (C45b)

where the upper cutoff in the integral translates the fact that the continuous description applies to scales greater than
the coarse-graining scale a, and the lower cutoff corresponds to the system size L. To compute (C45a) we note that
ql®>(1 + ¢?¢*)] ' ~ ¢! for ¢ — 0 and f;://g dgq~" diverges for L — oo, therefore we can use the equivalence of the

integrals

27 /a 27 /a 1
/ dg—1 / dg + = log(L/a), (C46)
2

w/L q2(1+q2€2) L—o0 27 /L q



and write

f27'2a2

2y — 1 1
<|ul‘ >L—_>oo 4 (? 2

=+
S

It follows from (C38) that both integrands in (C45b) converge in the limit ¢ — 0 therefore both integrals converge
for L — oo and we thus take this limit for the derivation below. We focus on the following integral

27 /a 1— Jolar 27 /7 1 — Jolar 27 /a 27 /a Jr(ar
/ dq q(2 o(2q2)) :/ dq q(2 o(2q2))+/ dg 1 _/ dg 1 0(612)2 L (cas)

This decomposition is such that the first term on the r.h.s. cancels in the limit » — co. For the second term we note

log(L/a) = C7 log(L/a). (C47)

once again that ¢[q?(1 + ¢%¢?)]7! ~ ¢~ ! for ¢ — 0 and f;://: dgq~! diverges for » — 0o, therefore we can use the
equivalence on the integrals

27 /a q 27 /a 1 ( / ) ( )
dg ———— = / dg — = log(r/a). C49
/271'/7" q2(1 + q2£2) T Jor/r q &

Finally for the third term, using (C41) we bound the integral in the following way

27 /a 27 /a
aJo(qr) 1 1
dg 55| < — dg =77+ C50
/271'/7" I q2(1 + q2£2) - \/F 27 /r 1 q3/2(1 + q2§2) ( )
2n/a g/

where we note once again that [¢3/2(1 + ¢2¢2)]~! ~ ¢~3/2 for ¢ — 0 and f%/r dgq diverges for r — oo, therefore

we can use the equivalence on the integrals

1 27 /a 1 1 27 /a 1 \/5 a
— g = dg—n =/ 21—/ 51
\/F 2 /r 1 q3/2(1 +q2€2) r—o0 \/; 27 /7 qq3/2 m |: T:| 7 ( )

which is finite in the r — oo limit. Therefore only the second term in the r.h.s. of (C48) diverges, and we have the
following equivalence

27 /a
q(1 — Jo(gr))

7 = | . 2
| an i) < st/ (C52)
which eventually leads to

2.2 2| |2

(s — w))? fridle” |1 1 P Ct
((qo - (u; —wi)) >|0L;000 e |gte log(r/a) = |go|* O log(r/a). (C53)
r;—7j| =00
Therefore, using (C30), (C31), (C47), and (C53), we obtain
. _1qol2C!
<7/’qo,i¢q0,j> Lo (r/a) 2laol"C”, (C54)
\7'?77';”*)00

D. LARGE-WAVELENGTH SCALING OF THE STRUCTURE FACTOR

We consider the structure factor (16)
1 -/ 1 Qh o0 nt) /i
S(q) _ N Z <el(I'(7‘j77'i)> _ N Z e]q-(r]. —ry) <61q~(uj7ui)> ) (D55)
ij=1 ij=1

For normally distributed driving noise then, due to the linearity of (B15), displacements are also normally distributed.
Using (C31) we write

foxp G 5 = w))) = exp (5 d(a- (s~ w)))) = oxp (~3lal* s — ) ) (D56)



where the second equality derives from isotropy. It is possible to Taylor expand the latter exponential if
lq)? (luj — uz|2> < 1. (D57)

In the limit L — oo we consider wavevectors which scale as

2T
~—. D58
lal~ — (D58)

Therefore, considering (|u; — u;|*) < 2 (|u;|?) in steady state, and the following scalings

(lwil?) = (W), (D59a)
(lwil?) = CTlog(L/a), (D59b)

for fluctuating stress (C40) and fluctuating force (C47) respectively, we have that condition (D57) is satisfied for large
enough L > a. We then write

N
1 ig-(r?—r? 1
S = % 3 e (1o Jlal g - i) )
|g|~27/L 5,j=1

(D60)
1L o 1, 5 9 1, 5
— 30D (1 Jlal i) + 5lal i)
ij=1
where the first two terms cancel due to the orthogonality relation (B17). Using (B16) we thus obtain
_ Loeys 2
S(q) I ﬁhﬂ (lagl*) . (D61)



E. DYNAMICAL TRANSITION IN ACTIVE BROWNIAN PARTICLES (ABP) AND PAIR ACTIVE
BROWNIAN PARTICLES (PABP)

We analyse the melting transition in both our particle models — active Brownian particles (ABP) and pair active
Brownian particles (pABP) — from a dynamical point of view, using two-time correlation functions borrowed from
glass physics. First, the mean square displacement MSD(¢) (27) [7] which corresponds to the variance of displacements
over particles as a function of time, and the self-intermediate scattering function [§]

N
F(k.t) = <‘}V S exp ik (fri(t) = (1)) = [r:(0) = 7(0)))) ‘> , (B62)

with 7(¢) = (1/N) ZZI\; r;(t) the position of the centre of mass at time ¢ and k = 27(1/D, 0), which may be interpreted
as the proportion of particles whose displacements at time ¢ are less than 27 /|k| = D in norm, assuming isotropy.
We show both functions in Fig. E1.

In the ABP model, the melting transition of the soft crystal lies between f = 0.07 and 0.08, with a bounded MSD
(Fig. E1(a)) and no or few defects below that value, and a defect-rich liquid above that value. Melting is also evident
in the more rapid decay of the self-intermediate scattering function above the transition (Fig. E1(c)).

In the pABP model, there is an abrupt transition from solid to liquid between f = 0.112 and 0.115, evident in the
change between a state with very low plateau values of the MSD (Fig. E1(b)) and a correspondingly high plateau
value of the self-intermediate scattering function (Fig. E1(d)) on the one hand, and a rapidly diffusing liquid state
where correlations are lost on the other hand.

(c) | (d) |
oi e : 7 oi 7
100 t/T 102 100 t/r 10°

FIG. El1. (a, b) Mean sqaured displacements as functions of time MSD(t) (27) in steady state for different stochastic force
amplitudes f. Dashed lines are linear functions of time as guides to the eye. (c, d) Self-intermediate scattering function Fj(t)
(E62) in steady state for different stochastic force amplitudes f. (a, c¢) Active Brownian particles (ABP) and (b, d) pair active
Brownian particles (pABP), with N = 16384 particles and persistence time 7, = 25. Identical markers between (a) and (c) and
between (b) and (d) correspond to identical data sets.

We confirm that pair active Brownian particles systems at f = 0.11 (solid phase) and f = 0.112 (phase-separated)
have reached steady by reproducing the time evolution of the hexatic order parameter in these systems, starting from
an initial ordered configuration, in Fig. E2. We have used the data starting roughly from the half of this time lapse
(highlighted with a vertical dashed line) to compute the mean squared displacement and self-intermediate scattering
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function of Fig. E1. We also provide videos highlighting the argument of the local hexatic order parameter (see e.g.
Fig. Fl(a~c)) at f =0.11 (supp-video_1.mp4) and f = 0.112 (supp_video_2.mp4).

1

f\; ¢6,i|

_lms

e f=011 | 1
[~ f=0112 | 1

H

0 t / T 2000

FIG. E2. Time lapse of the ensemble-averaged hexatic order parameter

(1/N) vazl Wm“ for pair active Brownian particles
systems from an initial ordered configuration. Vertical dashed line represents half of the time lapse.
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F. DEFECTS IN PAIR ACTIVE BROWNIAN PARTICLES (PABP)

We reproduce in Fig. F1(a-d) the snapshots of Fig. 3 and add the corresponding visualisation of the coordination
number z; of particles (Fig. F1(e-f).

We highlight structural order with three descriptors: the local orientational order parameter ¢ ; (11) (Fig. F1(a-b))
which characterises the local orientation of the lattice, the local translational order parameter g, ; (Fig. F1(c-d))
which characterises the translational regularity of the lattice, and the coordination z; of particles (Fig. Fl(e-f)),
i.e. the number of neighbours of each particle. We compute these neighbours with a Delaunay triangulation from
the particles’ positions — this is done with library CGAL [9]. We stress that in a regular triangular lattice, z; = 6.
Coordination numbers z; # 6 (typically z; = 5 or 7) characterise topological defects known as disclinations which
locally break translational order. However orientational order is not broken if these defects are bound. In this latter
case they correspond to a dislocation.

f=0.112

e 5fold e 6-fold e 7-fold e 5fold o 6-fold e 7-fold o 5fold o 6-fold e 7-fold

FIG. F1. Order and disorder for pair active Brownian particles (pABP). Visualisation of the argument of the local hexatic
order parameter arg(ys,:) (11) (a-c), the argument of the local translational order parameter arg(yq, ) (12) (d-f), and the
coordination number z; of particles (g-i). We used N = 16384 particles and persistence time 7 = 25. Stochastic force amplitude
is (a,d, g) f=0.1, (b, e, h) f =0.112, (¢, f, i) f = 0.15.
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G. UNSCALED STRUCTURE FACTOR

We reproduce in Fig. G1 the unscaled data of Fig. 6.

ABP pPABP

100 — 100 4
I Iy | I o
— a — | b
=7 @ = )
»n | 1 1 [ |
L F f 0.110 - 0.120]

L i [ 0.010 +0.112 4 0.150

_ol, £ +0.0500.080 9 0.050 o.115$0.300
10 -10‘020 0.07040.100 ] 1077 0.100 - 0.117 =+ 0.6004

0.030 ‘ ‘ ‘ 0.107
1072 107! 10° 100 1072 107! 10° 10!
q q

FIG. G1. Structure factor S(g) (16) defined as cylindrical average of S(q) over wave-vectors ¢ = (2rm/L,,2mn/L,) which
satisfy |g| € [q — 8q/2,q + 6q/2] with 6¢ = 1072, We plot the structure factor for different stochastic force amplitudes f in
(a) for the particle model with particle-wise stochastic force (ABP), and in (b) for the particle model with pair-wise stochastic
forces (pABP). We used N = 16384 or 65536 particles, and persistence 7 = 25.
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