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SIMULATION PARAMETERS

Symbol Value Explanation

(x, y) (300, 300) Domain size of the box (periodic boundary conditions)

N 144 Total number of cells

Na varied Total number of active cells

Tm 10 Temperature

Opixel-copy 2 Neighbour order for the pixel-copy attempts

Oadh 8 Neighbour order for the adhesion term

Oboundary 1 Neighbor order for the boundary pixel counting

Vt 625 Target volume of the cells

λvol 1 Strength of the volume constraint

St 150 Target surface of the cells

λsur 1 (or 0) Strength of the surface constraint (depends on the
perimeter of a cell)

κi varied Magnitude of the motility of the cells. The index i indi-
cates whether the cells is active or passive

JAA 5 Adhesion for two neighboring active cells

JAP 5 Adhesion for a neighboring passive and active cell

JPP 5 Adhesion for two neighboring passive cells

TABLE S1: Overview of the simulation parameters used in the Cellular Potts Model.

VISUALIZATION OF THE FEATURES

The features that are extracted from the simulations are described in Table 1 in the manuscript. Figure S1 shows
a visualization of the variables defined in the table. Panel A shows the definition of the centre of mass and the pixel
vector r⃗i that describes the position of the pixel i with respect to the centre of mass. These variables are used to
calculate the volume and moments of mass of the cells. Panel B shows the definition of the ellipse that is fitted to the
cells. The ellipse can be described by the semi-major axis a, semi-minor axis b and an orientation θ. Panel C shows
the definition of the variables necessary to calculate the bond-order parameters. Rj is the centre-of-mass connection
between a central cell and its neighbour j. Moreover, it shows the definition of the bond length βj . The bond length
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is determined using the common surface method as implemented in CompuCell3D [2]. Panel D shows the definition
of the alignment between neighbouring cells and combines the ellipse characteristics (see panel B) of the central cell
and its neighbour j. Finally, panel E shows the boundary pixels (in red) extracted using the build-in boundary pixel
detection in CompuCell3D [2].
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FIG. S1: Visualization of the definition of the variables used in the definition of the features. Panels A-E show the
different properties extracted from the cell and its neighbours. The properties are extracted using the built-in

functionality in CompuCell3D [2].
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SHAPE CHARACTERISATION

During the feature calculation, cell properties are extracted for all cells in the simulation. We fit an ellipse to all
cells to get a first estimate for the cell’s shape. Based on the semi-major axis and the semi-minor axis of the ellipse,
we can calculate the aspect ratio as the ratio between the two. Fig. S2 shows the aspect ratio for the non-motile cells
(κp = 0) and the motile cells (κa = 1500) as we vary the number of motile cells in the confluent layer. For a single
motile cell, the aspect ratio of the motile cells is significantly larger than for the non-motile cells. This difference
becomes smaller as the number of motile cells increases. For Na = 60, we observe that the mean aspect ratio for
the non-motile cells is even larger than for the motile ones. While the mean aspect ratio of the motile cells hardly
changes, the shape of the non-motile cells is more strongly affected by the presence of the motile cells. We observe
similar trends for the bond order parameter ψ6, which measures the presence of a six-fold symmetry around cells (see
Fig. S4).

When both cell types are motility, but the motility is different (high-motility cells have κa = 300 and the low-
motility cells have κp = 150), the differences between the two cell types are less apparent (see Fig. S3 and S5). It
becomes more difficult to distinguish the two cell types. The machine-learning results support these observations.
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FIG. S2: Aspect ratio for the active and passive
cells in the simulation for κp = 0 and κa = 1500.

The results are shown (left to right) for 1, 15 and 60
active cells in the simulations. As the number of

active cells increases, the aspect ratios become more
similar.
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FIG. S3: Aspect ratio for the active and passive
cells in the simulation for κp = 150 and κa = 300.

The results are shown (left to right) for 1, 15 and 60
active cells in the simulations. The aspect ratios for

both cell types are very similar.
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FIG. S4: Bond order parameter ψ6 for the active
and passive cells in the simulation for κp = 0 and
κa = 1500. The results are shown (left to right) for
1, 15 and 60 active cells in the simulations. For

Na = 1, the passive cells are organized in a six-fold
symmetry. As the number of active cells increases,
the underlying structure around active and passive

cells becomes similar.
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FIG. S5: Bond order parameter ψ6 for the active
and passive cells in the simulation for κp = 150 and
κa = 300. The results are shown (left to right) for 1,
15 and 60 active cells in the simulations. The cells
does not show a strong six-fold symmetry. When
the motility of the high-motility and low-motitily
cells becomes more similar, so does the bond order

parameter ψ6.
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FIG. S6: Distribution of the semi-minor axis for the motile (left) and non-motile (right) cells as the number of
motile cells in the confluent layer changes. The results are normalized for a fair comparison between the number of

motile and non-motile cells. We have set κa = 1500 and κp = 0.
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FIG. S7: Distribution of the semi-major axis for the motile (left) and non-motile (right) cells as the number of
motile cells in the confluent layer changes. The results are normalized for a fair comparison between the number of

motile and non-motile cells. We have set κa = 1500 and κp = 0.
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FIG. S8: Distribution of the standard variance of mass for the motile (left) and non-motile (right) cells as the
number of motile cells in the confluent layer changes. The results are normalized for a fair comparison between the

number of motile and non-motile cells. We have set κa = 1500 and κp = 0.
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Second, we measured the distribution of the semi-major axis and the semi-minor axis in a different way. As the
number of motile cells changes, we may expect that the shape characteristics of the cells change. Figure S6 shows
how the distribution of shape characteristics (semi-minor axis here, but similar results for e.g. the semi-major axis
in Figure S7) change as Na changes. The accuracy drops as Na increases, which could be explained by the fact that
the shape characteristics are more similar. There are two interesting observations to highlight: 1) the distribution of
the motile cells has a similar shape, but the distribution becomes wider as Na increases, and 2) the distribution of
the non-motile cells changes significantly skewed distribution towards a more symmetric distribution similar to the
distribution of the motile cells as Na increases. These graphs can explain why the accuracy drops as Na increases.
These results may also explain why the generalization is poor when Na = 1 or Na = 60 as these distributions are very
different, but works better when the number of motile cells is in between these values.

Third, we have also plotted the standard variation in mass in Figure S8. Here, the distributions for the motile and
non-motile cells remain different, even for larger Na and therefore this could be a characteristic feature that has an
important role in the predictive power of the ML model as the cells become more similar. This features also appears
in the SHAP and PCA analysis.

Finally, Figure S9 shows additional structural features for varying Na, γ. These results support the observations
that the ML predictions become more difficult for increasing Na and γ. Similarly, some of the non-local shape features
(see Figure S10) are nearly identical, indicating that averaging properties over the local neighbourhood leads to a
significant reduction of the available information. Others, on the other hand, show more differences and may have a
stronger potential for predictive power. The local shape features appear to show the largest differences in the feature
distribution for increasing for Na and γ. Nonetheless, even within the subset of local shape features, some features
have more distinct differences than others. These results indicate that it may be difficult to determine whether the
cells belong to the high-motility or low-motility phenotype based on individual distributions, and that the ML model
can learn the more complex dependencies between these features to make accurate predictions of cells on the individual
level.
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FIG. S9: Subset of the distributions of structural features extracted from the simulations. Bond order parameter ψ5

(top-row) describes the five-fold symmetry around cells, and the bond order parameter ψ8 (bottom-row) describes
the eight-fold symmetry. The coloured (red) plots are for the motile cells, and the gray plots are for the

zero-motility (left) and low-motility (middle, right). The distributions are very similar, except for γ = 0, Na = 1.
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FIG. S10: Subset of the distributions of non-local (neighbour) shape features extracted from the simulations. The
volume of the cells and the X are shown in the top-row and bottom-row, respectively. The coloured (red) plots are

for the motile cells, and the gray plots are for the zero-motility (left) and low-motility (middle, right). The
distributions differ in their potentially predictive power.
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FIG. S11: Subset of the distributions of local shape features extracted from the simulations. The volume of the cells
and the X are shown in the top-row and bottom-row, respectively. The coloured (red) plots are for the motile cells,
and the gray plots are for the zero-motility (left) and low-motility (middle, right). The distributions are different

over a larger range of γ and Na.
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SHAPE AND STRUCTURE FEATURES

In Sec. III A, we show the accuracy of the ML prediction when the ML algorithm only uses shape features as input.
Fig. S12 shows the accuracy for a ML model that is trained on either the structure features or the shape features. The
structure features mainly consider bond order parameters and the distances between neighbouring cells and leads to
a significantly worse phenotype prediction. Although the set of structure features is by no means complete, structure
features are more difficult to extract from experimental results, as the cell’s centre-of-mass can be defined in various
ways. Shape features, on the other hand, can be measured directly from static images using image processing.
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FIG. S12: Accuracy of the ML prediction as the number of active cells Na changes. The passive cells are non-motile
(κp = 0) and the active cells are motile (κa = 1500). The algorithm is trained on the full set of features (black dots),

and on a subset of the features, namely 1) structure features (green squares) or 2) shape features (red stars).
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COMPARISON OF INCORRECT PREDICTIONS

Apart from the accuracy, we can also study the number of incorrect predictions. These are either false positives
(incorrectly identifying a motile cell as non-motile) or false negatives (incorrectly identifying a motile cell as non-
motile). Figure S13 shows the number of incorrect predictions of each type for the machine-learning models trained
on either all features or solely local shape features. When all features are used, the model predicts approximately
the same number of false positives and false negatives. However, since we use only local shape features, the overall
accuracy remains the same but for large values of Na, the model identifies motile cells more often inaccurately while
it performs better at predicting the non-motile cell.
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FIG. S13: The number of incorrect prediction for the two machine learning models (in black with all features, in blue
with local shape features) corresponding to the result of Figure 3 in the manuscript. The False Positives indicate the
instances where a non-motile cell is identified as motile, while the False Negative indicate instances where the motile
cell is identified as non-motile. Depending on the features, the number of false positives and false negatives changes.
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HEAT MAP FULL SET OF FEATURES

In the Cellular Potts simulations, both the motility strength of both cell types and the number of motile cells varied.
Figure S14 shows the difference in accuracy between the learning with the local shape features and the complete set
of 145 features. We observe the largest difference between the two neural networks for a small number of active cells.
In this regime, using all features is beneficial when the motility of the passive and active cells is similar (γ increases).
The larger predictive power of the full set of features, when Na is small, implies that distortions in the structural
features are more distinct in this regime. This effect is also observed in Fig. S12 for small ϕa; in this regime, the
structural features also allow for accurate phenotype predictions.
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FIG. S14: Heat map of the difference in accuracy between the learning with solely local shape features and the
learning with all features. The results are shown for the simulation with a passive force strength (κp = 150). The
red indicates the regions in which the prediction with all features is better, and the green indicates the regions in
which the predictions with the local shape features are better. Overall, the differences between the two approaches

are small.
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DYNAMICS

By changing the number of active cells and the active force strength κa, the dynamic behaviour of the cells changes.
We calculate the effective long-time diffusion coefficient Deff from the mean square displacement. The ratio between
the effective diffusion coefficient of active and passive cells, Deff,A/Deff,P correlates with the accuracy, see Fig. S15.
When the motility of the active and passive cells are very similar (small ratio Deff,A/Deff,P ), we observe that the
prediction worsens. The predictions are best when the passive cells are non-motile (black).
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FIG. S15: Correlation between the ratio of diffusion coefficient (Deff,A/Deff,P ) and the accuracy. Plot for LOCAL
AND SHAPE features. The accuracy gets better as the difference in diffusion coefficient becomes larger. The black

points (κp = 0) represent a different situation than the coloured points (κp = 150).

ALTERNATIVE MACHINE-LEARNING APPROACHES

Table S2 shows the comparison of the classification accuracies of the model used in the manuscript (a multilayer
perceptron, denoted as NN), gradient-boosting, and logistic regression. The performance of the neural network and
gradient-boosting models is very similar – they differ only at the second decimal place. In contrast, the logistic
regression model consistently yields lower accuracy compared to the other ML methods. The model was implemented
in PyTorch [1] and trained using BCEWithLogitsLoss, ensuring numerical stability and proper gradient flow.

We have also applied stratified 5-fold cross-validation with shuffled splits to obtain a more systematic and statisti-
cally reliable estimate of the model’s performance. This method preserves class balance within each fold and mitigates
potential biases arising from data ordering. The accuracy obtained through cross-validation closely matched the av-
erage accuracy of the 20 independently trained models, with differences ranging from 0.01 to 0.07.

γ Na NN accuracy Gradient-boosting accuracy Logistic regression accuracy Cross-validation

0.1 1 0.94 0.99 0.73 0.98

0.1 60 0.74 0.77 0.60 0.75

0.5 1 0.60 0.63 0.50 0.56

0.5 60 0.55 0.57 0.5 0.62

TABLE S2: Comparison of the classification accuracies of the model used in the manuscript (a multilayer
perceptron, denoted as NN), gradient-boosting, and logistic regression. A cross-validation has been included as well.
The results are for four representative parameter sets, but we observe the same trends for other values of Na and γ.
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FEATURE SELECTION: SHAP AND PCA

Figure S16 displays the list of the six most important features selected by SHAP for four different configurations:
(a) Na = 1 and γ = 0 (b) Na = 60 and γ = 0 (c) Na = 1 and γ = 0.5 (d) Na = 60 and γ = 0.5. To assess whether
these features are sufficient for accurately classifying cell motility, we train a neural network for each configuration
using the six most important features selected by SHAP as input features. For Na = 1 and γ = 0, the accuracy on the
test set using the features shown in Fig. S16 (a) is 0.98, while the accuracy with all features is 0.99. When Na = 60
and γ = 0, the accuracy with the features from Fig. S16 (b) is 0.66, compared to 0.73 with all features. For Na = 1
and γ = 0.5, the accuracy with the features in Fig. S16 (c) is 0.60, and the accuracy with all features is 0.607. Lastly,
for Na = 60 and γ = 0.5, the accuracy with the features in Fig. S16 (d) is 0.54, while the accuracy corresponding to
all the features is 0.55.

Additionally, PCA analysis was performed with two principal components. Table S3 presents the top ten features
contributing the most to the first two principal components for four different configurations: Na = 1 and γ = 0,
Na = 60 and γ = 0, Na = 1 and γ = 0.5, and Na = 60 and γ = 0.5. To evaluate the efficiency of these features for
accurately classifying cell motility, we trained a neural network for each configuration using the first two principal
components. For Na = 1 and γ = 0, the variance associated with the first two principal components is 0.54, and
the accuracy associated with a neural network trained with these components is 0.96. When Na = 60 and γ = 0,
the variance for the first two principal components is 0.30, and the accuracy for a neural network trained with these
components is 0.6. For Na = 1 and γ = 0.5, the variance related to the first two principal components is 0.30, and
the accuracy linked to a neural network trained with these components is 0.52. Lastly, when Na = 60 and γ = 0.5,
the variance associated with the first two principal components is 0.31, and the accuracy related to a neural network
trained with these components is 0.53.

These results show that both PCA and SHAP do not outperform the accuracy achieved by a neural network trained
with local shape features as input. Furthermore, as explained in the main text, the list of the most important features
obtained from these analyses comprises a combination of shape and structural features, making these analyses less
computationally efficient.

(a) (b)

(c) (d)

! = 0,%& = 1 ! = 0,%& = 60

! = 0.5, %& = 1 ! = 0.5, %& = 60

FIG. S16: Interpretation of the multilayer perceptron predictions using SHAP for different combinations of Na and
γ. The SHAP beeswarm plots show the impact of the six most important features on the model’s output. The

horizontal position (x-axis) of the dots is determined by the SHAP values of the features, while colour is employed
to represent the original values of the features. Panels (a), (b), (c), and (d) correspond to different combinations of

Na and γ: (a) Na = 1 and γ = 0 (b) Na = 60 and γ = 0 (c) Na = 1 and γ = 0.5 (d) Na = 60 and γ = 0.5.
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Na γ Top ten most important features

Number of neighbours

NB MIN 1st Moment of neighbour distance

NB MIN 2nd Moment of neighbour distance

1st Moment of neighbour distance

1 0 1st Moment of border length

NB AV 1st Moment of neighbour distance

2nd Moment of neighbour distance

2nd Moment of border length

NB AV 2nd Moment of neighbour distance

NB MAX 1st moment of border length

Standard variation of mass

Semi-major axis

1st Moment of mass

2nd Moment of mass

60 0 3rd Moment of mass

Skewness of mass

Surface

Surface volume ratio

NB AV standard variation of mass

Standard variation of neighbour distance

Standard variation of mass

1st Moment of mass

2nd Moment of mass

Skewness of mass

1 0.5 3rd Moment of mass

Semi-major axis

Standard variation of neighbour distance

2nd Moment of neighbour distance

NB AV 2nd Moment of neighbour distance

NB AV standard variation of mass

Standard variation of mass

1st Moment of mass

2nd Moment of mass

Semi-major axis

60 0.5 Skewness of mass

3rd Moment of mass

Standard variation of neighbour distance

NB AV standard variation of mass

NB AV 1st Moment of mass

2nd Moment of neighbour distance

TABLE S3: Top ten features with the greatest contribution to the first 2 principal components extracted by PCA
for various combinations of Na and γ. The formulas used to compute these features are presented in Table 1 of the

main text.
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