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The supporting information document provides additional details on the model for
a plain, charged particle near a charged wall (Section S1), simulation details for data
presented in the manuscript (Section S2), validation of the model introduced in Sec-
tion S1 (Section S3), impact of shear flow on particle behavior (Section S4), angular
velocity maps (Section S5), state diagrams (Section S6), data illustrating the impact of
hydrodynamics (Section S7), and illustration of the impact of EDL torque (Section S8).

S1 BD Simulation Details for a Single Charged Particle Near
a Charged Wall

A spherical particle of radius R is considered. The particle has a uniform surface charge
ψp, is suspended in a density-mismatched Newtonian fluid with viscosity µ, an electro-
static permittivity ε0, and an inverse Debye screening length κ that is determined by the
ionic strength I of the fluid. The thermal energy of the system is represented by kBT ,
where kB is Boltzmann’s constant. Importantly, the particle is bounded by a charged
wall (ψw). Assuming a constant charge condition and using height z to describe the
separation distance of the particle surface from the wall, the surface interaction energy
per unit area, W , resulting from the electric double layer interaction, is expressed by
equation (S1):1

W = εκ
2ψpψwe

−κz + (ψ2
p + ψ2

w)e
−2κz

1− e−2κz
. (S1)

Equation (S1) is based on the Poisson-Boltzmann theory. The force, F , between two
interacting objects, can be related to the surface interaction energy,W , via the Derjaguin
approximation, equation (S2):

F = 2πReffW , (S2)

where the effective radius, Reff , for the case of a sphere interacting with a planar sub-
strate is equal to the particle radius R. Integrating equation (S2) over the height z,
provides the electrostatic double-layer interaction potential, UEDL, as shown in equa-
tion (S3).

UEDL = 2πRε

[
ψpψw ln

1 + e−κz

1− e−κz
− (ψ2

p + ψ2
w)

ln(1− e−2κz)

2

]
(S3)
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A theoretical model is employed on the basis of the stochastic Langevin equation to
probe the dynamics of the particle interacting with the wall according to equation (S4).

dri
dt

= u∞(ri) +
1

γ
(FB

i + F nh
i ) (S4)

Here, u∞(ri) is the velocity of the ambient fluid at particle position {ri} and γ is the
drag coefficient for a perfect sphere, 6πµR. The non-hydrodynamic force, F nh

i , includes
any surface forces or external body forces, i.e., inter-particle interaction forces, that are
a function of {ri}. FB

i is a random fluctuating force acting on the particle that describes
Brownian diffusion and renders equation (S4) a stochastic differential equation. FB

i is
assumed to represent a Gaussian stochastic process with the following moments:

{FB
i } = 0 , (S5)

⟨{FB
i (t)}{FB

i (t′)}⟩ = 2γkBTδ(t− t′) , (S6)

where T is the absolute temperature and δ(t−t′) is the Dirac delta function. The magni-
tude of FB

i is a function of T and the drag force, which follows the fluctuation-dissipation
theorem. For a colloidal particle, FB

i mimics the impact of the ambient fluid’s fluctu-
ating molecules on the particle and is expressed by the white noise function η(t), which
is a Gaussian stochastic process with moments ⟨η(t)⟩ = 0 and ⟨η(t)η(t′)⟩ = δ(t − t′).
Note the standard white noise assumption for the Brownian force applies for the system
studied here as the ratio of γ̇ over the bath frequency (≈ 1012 s−1) is less than 10−11. For
larger ratios, i.e., very large γ̇ or more viscous fluids, a non-white noise more accurately
describes the random fluctuations.2 Additionally, the ratio of the advection to Brownian
forces is expressed by the Péclet number based on the colloidal Brownian/diffusion relax-
ation, Pep = γ̇R2/D0, where D0 is the translational diffusivity of the isolated Brownian
particle in bulk. Depending on the particle size and strain rate, Pep numbers vary over
the range of 0 ⩽ Pep ⩽ 0.5 × 104. The sedimentation force and particle-wall interac-
tions are incorporated into the model via equation (S4), within the framework of the
Derjaguin-Landau-Verwey-Overbeek (DLVO) theory as non-hydrodynamic forces acting
on the particle, F nh, to describe the dynamical behavior of the particle.

S2 Details of numerical simulations and of statistical testing

Results presented in Figures 2 and 3 in the manuscript are obtained from Matlab simula-
tions of Np = 30 particles over t̄ = 1×104 and dt = 0.001 resulting in 1×107 integration
steps. Owing to the large number of integration steps and the short equilibration time
(ca. 500 steps) needed for the particle, all orientations and heights are included in the
averaging. The initial condition is randomized using Matlab’s default seed by assigning
to z a random value from a normal distribution with mean 3 and variance 1, while the
initial condition on the particle orientation θ is drawn uniformly in the interval [0, π]. z
and θ axes are divided into 800 and 600 bins, respectively.

Results presented in Section 6 of the manuscript are obtained by simulating Np = 50
independent particles, each integrated from t0 = 0 to t1 = 60 and using dt = 0.006,
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resulting in 1 × 104 integration steps. The equilibration time is set to teq = 3, which
corresponds to removal of the first 500 integration steps from the data analyzed. The
initial condition is randomized by assigning to x and y a random value from a normal
distribution with mean 3 and variance 1, the initial condition on the particle orientation θ
is drawn uniformly in the interval [0, π]. Note, however, that the system quickly reaches
equilibrium so the dynamics observed at t̄ ≥ teq is completely independent from the
initial condition.

Angular velocity maps (see Section S5) are obtained by computing the integral in
equation (10) of the manuscript and averaging over the 50 particles simulated. For state
diagrams (see Section S6), the period of the rotation of each particle is computed as
T = 2π/⟨ω⟩t. Subsequently, the number of bins is set to ⌊12(t1 − teq)/T ⌋, corresponding
to 12 bins per period, along the entire integration time. For particles with very small ⟨ω⟩t,
i.e., very large periods, this results in a very small number of bins. If the number of bins
is smaller than 100, it is manually set to 100. Note that the results of the classification
might slightly depend on the assignment of the number of binds, especially in regions
where the two behaviors are close. The resulting trajectories of the orientation averaged
over time are used to compute the derivative to obtain the time-dependent angular
velocity ω(t̄).

Figure S1: Representation of angular trajectories and corresponding time-dependent angular velocity.
Top: angular trajectories for three states (orange and green from Figure 5A and red from Figure 5B)
shown in Figure 5 of the manuscript. All curves are for R = 4µm, the orange curve is for δ = 16nm
and γ̇ = 6.0 s−1, the green curve is for δ = 16nm and γ̇ = 2.0 s−1 and the red curve is for δ = 76nm
and γ̇ = 2.0 s−1. Bottom: Time dependent angular velocity obtained from the three trajectories in top
panel using the same color scheme.

Figure S1 shows three examples of ω(t̄). Note that the curves in the top panel are
the same data shown in Figure 5 of the manuscript with matching colors (see caption).
For each state point, all ω(t̄) are fitted to a constant and a sinusoidal model and the fit
is compared using the Akaike Information Criterion,3 i.e.,

AIK = 2k + n log(ssr/n) , (S7)
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where k is the number of parameters in each model (one for constant, four for sinusoidal),
n is the number of data points (which in the present context correspond to the number
of distinct values of ω(t̄), i.e., the number of bins) and ssr is the sum of the squared
difference between the data and the model (known as sum of squared residuals, hence
ssr). The model with the lowest AIK is considered to be the best model for a trajectory.
Referring to Figure S1, it is clear that the orange curve is best fitted by a constant model
and, analogously, that the green curve is best fitted by a sinusoidal model. Example
results for fits to the red curve are shown in Figure S2. Clearly, both the constant and

Figure S2: Fit to a trajectory at the boundary between rotating and non-rotating behavior. The red
curve is the same data as the red curve in Figure S1, i.e., R = 4µm, δ = 76nm and γ̇ = 2.0 s−1. The
light green curve is the best constant model that describes the data and the purple curve is the best
sinusoidal model that describes the data.

sinusoidal models are bad fits. Nevertheless, the sinusoidal model turns out to be better
because the peak associated with the only observed rotation introduces a very strong
penalty for the constant model, which not only does not capture the peak well, but is also
shifted upward by it and hence does not capture the constant part either. The sinusoidal
model, instead, is able to better “absorb” the variations in the data and therefore turns
out to be slightly better. Other realizations of the same state point, however, do not
show the rotation and hence do not have a peak in ω(t̄), like the cyan trajectory shown in
Figure 5B of the manuscript. Those trajectories are better fitted by the constant model.
As this protocol is applied to each of the 50 particles simulated, it results in a binary
classification of the form shown in Figure S3.

Figure S3 shows the number of particles classified as constant or sinusoidal for the
three examples of Figure S1. A two-sided binomial test is applied to decide whether
or not the classification is reliable. To this aim, a null hypothesis is made that the
data come from the random sampling of a binary variable, i.e., that they come from
B(k, 50, 0.5), the binomial distribution with 50 trials (the number of particles simulated
per state point) and success probability 0.5. The threshold of the p value is fixed at
0.01 and the confidence interval of the null hypothesis is computed. If the frequency
of both classes falls inside such an interval, the null hypothesis cannot be rejected, the
state point is not classified and is marked as a red state point. In the case where the null
hypothesis can be rejected and the test result is assumed to be reliable, the state point
is assigned to the more populated class (constant or sinusoidal).
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Figure S3: Outcome of classification of the state points examplified by the trajectories in Figure S1.
The blue (pink) bar represents the number of particles classified as constant (sinusoidal). Black error
bars represent the confidence interval of the null hypothesis.

S3 Dynamical behavior of the charged particle near a charged
wall

It is essential to verify the accuracy of the governing equations introduced in Section
S1 for the system of interest, i.e., for a negatively charged particle interacting with
a negatively charged wall. Therefore, the modeled electrostatic double-layer interaction
potential, UEDL, derived in Section S1 is compared to published Total Internal Reflection
Microscopy (TIRM) data. The TIRM experimental measurement shown in Figure 5A
of Volpe et al.4 was obtained using a polystyrene particle with radius R = 1.45µm
near a glass surface, density of ρp = 1.053 g/cm3, suspended in 300µM aqueous NaCl
background electrolyte, and a Debye screening length κ−1 = 17nm for the 1:1 electrolyte.
Using the same parameters in equation (S3), the potential-distance relationship in Figure
S4 is obtained and shows good agreement with Volpe et al.’s4 TIRM data.

Figure S4: Interaction potentials for a negatively-charged polystyrene particle bounded by a negatively
charged glass wall from equation (S3).
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For a spherical particle with a total energy of Utot(z) = UEDL + Ugravity in thermal
equilibrium with the surrounding fluid that obeys the one-dimensional stochastic differ-
ential equation (S4), the probability distribution function (PDF) of the height of the
particle is given by the Boltzmann distribution:

ρs(z) = Ap · e
[−Utot(z)

kBT
]
, (S8)

with Ap chosen such that
∫
ps(z)dz=1. Hence, in another check of the validity of the

technique and the methodology, Figure S5 shows the numerically calculated PDF (blue
bars) of a SiO2 particle with R = 1µm suspended in DI water (Millipore, resistivity
18.2 MΩcm and viscosity µ = 1e−3Pa s at 25 °C, I = 1e−6M) at an equilibrium state
overlaid with the theoretical Boltzmann distribution (red curve).

Figure S5: Comparison of the simulated PDF of the height of a SiO2 particle of R = 1µm above a
negatively charged wall (blue histogram) and the theoretically prediction from Boltzmann distribution
(red curve).

In order to describe the trajectory of a uniformly charged particle of radius R sus-
pended in a fluid and bounded by a wall, the electrostatic double later interaction FEDL,
equation (S9), as well as the effective gravitational force Fg, equation (S10), are consid-
ered as non-hydrodynamic forces in equation (S4), (i.e., F nh

i = FEDL + F ∗
g ).

FEDL = 2πRε0κ
2ψpψwe

−κz + (ψ2
p + ψ2

w)e
−2κz

1− e−2κz
, (S9)

Fg = −m∗ g (S10)

where m∗ is the effective mass of the particle, i.e., the density mismatch between the
particle and the surrounding fluid is taken into account. Substituting equations (S9)
and (S10) into equation (S4) for the F nh

i term in the z direction and the Brownian
force, FB

i , with the Gaussian stochastic process, ηz(t), discussed in Section S1, the final
Langevin equation is obtained:
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γ
dz

dt
= FEDL(z, ψp, ψw) + Fg + ℓηz(t) (S11)

Equation (S11) is rendered dimensionless by measuring the length scale in units of
Debye screening length κ−1, i.e., z̄ = κz, and the time scale in units of T0 =

3πµR
kbTκ2 , i.e.,

t̄ = t/T0.
Numeric integration of equation (S11) utilizing the Euler time integration scheme

yields the trajectories of the Brownian particle bounded by the wall. Figure S6 displays
the 1D height trajectory obtained for an SiO2 particle of radius R = 1µm bound by a
negatively charged wall.

Figure S6: 1D trajectory of a SiO2 particle near a wall fluctuating around the equilibrium height that
matches with the probability distribution function shown in Figure S5.

Agreement of the model with published experimental TIRM data (Fig. S4) and
overlap of the simulated height distribution with theoretically predicted Boltzmann dis-
tribution (Fig. S5) instills confidence that the BD simulations can successfully simulate
the dynamics of a bottom-heavy Janus particle near a wall under more complicated
conditions.

S4 Impact of Shear Flow and Radius on Particle Behavior in
Model III

The behavior of a particle using Model III is summarized in Figure S7 for four specific
state points. Surface charges are set to ψ1 = −20mV , ψ2 = −40mV and ψw = −50mV ,
and δ = 86nm. Each state point is represented by three panels (from top to bottom):
non-dimensionalized particle distance from origin along x-axis x̄, particle orientation θ
and non-dimensionalized particle height z̄ shown as a function of non-dimensionalized
time t̄. Figure S7 (top left quadrant) shows the state point for R = 1µm and γ̇ = 6.0 s−1.
Figure S7 (top right quadrant) shows the state point for the same radius, R = 1µm, but
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a decreased shear flow, γ̇ = 1.0 s−1. Figure S7 (bottom left quadrant) shows the state
point for R = 4µm and γ̇ = 6.0 s−1, while Figure S7 (bottom right quadrant) shows the
state point for the same radius, R = 4µm, but decreased shear flow, γ̇ = 1.0 s−1.

  

Figure S7: Overall behavior of a particle in Model III. Surface charges are set to ψ1 = −20mV ,
ψ2 = −40mV and ψw = −50mV , and δ = 86nm for (top left quadrant) R = 1µm and γ̇ = 6.0 s−1,
(top right quadrant) R = 1µm and γ̇ = 1.0 s−1, (bottom left quadrant) R = 4µm and γ̇ = 6.0 s−1,
and (bottom right quadrant) R = 4µm and γ̇ = 1.0 s−1. Three panels for each state from top to
bottom are: non-dimensionalized particle distance from origin along x-axis x̄, particle orientation θ and
non-dimensionalized particle height z̄ shown as a function of non-dimensionalized time t̄.

S5 Angular Velocity Maps and Particle Height for Model III

Angular velocity maps, ω-maps, are presented in this section as a function of δ and
γ̇ for a large class of systems. Specifically, three combinations of surface charge of the
particle are considered, i.e., (ψ1, ψ2) = (−20,−20), (−20,−40), (−40,−20), all expressed

S8



in mV . For each of the combinations, two values of the wall charge ψw = −20mV and
ψw = −50mV are considered, hence specifying six classes of systems as they emerge from
the electrostatic properties of the particle and the wall. In each of the six classes, four
particle radii R = 0.75, 1.00, 2.00, and 4.00µm are considered. The resulting ω-maps are
shown in Figures S8 and S9 for ψw = −20mV and ψw = −50mV , respectively, with R
increasing from left to right.

  

Figure S8: Angular velocity maps of a bottom-heavy Janus particle under varying shear flow. The
wall charge is set to ψw = −20mV . From top to bottom, particle surface charges are ψ1 = −20mV ,
ψ2 = −20mV (top), ψ1 = −40mV , ψ2 = −20mV (middle), ψ1 = −20mV , ψ2 = −40mV (bottom).
From left to right: R = 0.75, 1.00, 2.00, and 4.00µm.

Figures S8 and S9 further support the analysis provided in Section 6 of the manuscript:
Systems with (ψ1 = ψ2) = (−20,−20), (−40,−20) are characterized by a monotonic de-
pendence of the white transition line on γ̇ as δ grows. For the system with (ψ1, ψ2) =
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(−20,−40), instead, the minimum around δ = 16nm is systematically observed, regard-
less of ψw. For larger particles, the non-monotonicity is particularly visible as the data
become noisier when R decreases. This, in turn, is caused by the small range of ω values,
which makes the transition line more noisy, not only in the proximity of the minimum.
Nonetheless, it can be seen that on reducing R the minimum persists, but is less sharp.
Overall, the results across all systems confirm that the presence of the minimum is a
consequence of the charge imbalance between the two faces of the Janus particle and, in
particular, that it is observed only when the heavy side of the particle is overcharged.

  

Figure S9: Angular velocity maps of a bottom-heavy Janus particle under varying shear flow. The
wall charge is set to ψw = −50mV . From top to bottom, particle surface charge are ψ1 = −20mV ,
ψ2 = −20mV (top), ψ1 = −40mV , ψ2 = −20mV (middle), ψ1 = −20mV , ψ2 = −40mV (bottom).
From left to right: R = 0.75, 1.00, 2.00, and 4.00µm.
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Figure S10: Average non-dimensionalized height, z̄, as a function of cap thickness δ and shear rate, γ̇, for
bottom-heavy particles with radius R = 0.75, 1, 2, and 4µm. Surface charges are set to ψ1 = −20mV ,
ψ2 = −40mV and ψw = −50mV .

Figure S10 shows the average non-dimensionalized height, z̄, as a function of cap
thickness, δ, and shear rate, γ̇, for bottom-heavy particles with radius R = 0.75, 1, 2,
and 4µm. Surface charges are set to ψ1 = −20mV , ψ2 = −40mV and ψw = −50mV .
The strong correlation between height and the behavior of θ seen in Figure S7 is also
apparent in Figure S10, where the non-rotation region exists for all particle sizes except
the smallest one. Note that particles with the smallest size considered in this study are
also those that show the slowest rotation at given state points.

S6 State Diagrams for Model III

State diagrams derived using the analysis described in Section S2 are shown in Fig-
ures S11 and S12 for the same systems shown in Section S5. The transition line (white)
between the rotating and non-rotating state is generally well-identified, with the entire
non-rotating region classified as constant except for large particles with small cap thick-
ness at small shear flow for which a relatively small region of unclassified state points
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Figure S11: State diagrams of a bottom-heavy Janus particle under varying shear flow. The wall
charge is set to ψw = −20mV . From top to bottom, particle surface charge are ψ1 = −20mV ,
ψ2 = −20mV (top), ψ1 = −40mV , ψ2 = −20mV (middle), ψ1 = −20mV , ψ2 = −40mV (bottom).
From left to right: R = 0.75, 1.00, 2.00, and 4.00µm.

is observed. As such regions are in the vicinity of the transition line, they are ascribed
to the peculiar behavior of the system as exemplified by Figure 5 in the manuscript. In
brief, at large δ and large γ̇, there is a vast region of state points classified as sinusoidal,
with the extension of the region weakly affected by the particle radius and affected by
the charge imbalance. The surface charge value seems indeed to be the more relevant pa-
rameter in determining the transition from rotating states with constant angular velocity
and the sliding behavior with time-varying angular velocity. Reducing δ implies to leave
the region of state points classified as sinusoidal, i.e., the ones that are characterized by
sliding behavior, and to enter a region of constant angular velocity. Such region has a
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triangular shape and ”moves” in the diagram with changing parameters consistent with
the interpretation given in the manuscript.

Figure S12: State diagrams of a bottom-heavy Janus particle under varying shear flow. The wall
charge is set to ψw = −50mV . From top to bottom, particle surface charge are ψ1 = −20mV ,
ψ2 = −20mV (top), ψ1 = −40mV , ψ2 = −20mV (middle), ψ1 = −20mV , ψ2 = −40mV (bottom).
From left to right: R = 0.75, 1.00, 2.00, and 4.00µm.

S7 Impact of Hydrodynamic Friction in Model IV

The dynamical behavior of a bottom-heavy Janus particle using Models III and IV with-
out (top two quadrants) and with friction (bottom two quadrants), respectively, is com-
pared in Figure S13 for two particle sizes, R = 1 (left) and R = 4µm (right). Each state
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point is represented by three panels (from top to bottom): non-dimensionalized particle
distance from origin along x-axis x̄, particle orientation θ and non-dimensionalized par-
ticle height z̄ shown as a function of non-dimensionalized time t̄. Surface charges are set
to ψ1 = −20mV , ψ2 = −40mV and ψw = −50mV , while cap size is δ = 86nm and the
shear rate is γ̇ = 6.0 s−1. Friction factors are fx = fθ = 1 for the top two quadrants in

  

Figure S13: Impact of hydrodynamic friction - overall behavior of a bottom-heavy Janus particle in
Model III (top) vs Model IV (bottom) for particle with R = 1µm (left, fx = fθ = 1 vs fx = 0.9887
and fθ = 0.9882.) and R = 4 µm (right, fx = fθ = 1 vs. fx = 0.8342 and fθ = 0.8428). Surface
charges are set to ψ1 = −20mV , ψ2 = −40mV and ψw = −50mV , and δ = 86nm and γ̇ = 6.0 s−1.
Three panels for each state from top to bottom are: non-dimensionalized particle distance from origin
along x-axis x̄, particle orientation θ and non-dimensionalized particle height z̄ shown as a function of
non-dimensionalized time t̄.

the absence of hydrodynamic friction. In the presence of hydrodynamic friction, friction
factors based on Goldman et al.5 of fx = 0.9887 and fθ = 0.9882 are used for R = 1
µm (bottom left quadrant) and fx = 0.8342, fθ = 0.8428 for R = 4 µm (bottom right
quadrant).
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Comparing each top panel with the corresponding lower panel shows that hydro-
dynamic friction has virtually no impact on the R = 1µm particle behavior beyond
reducing the maximum distance traveled, which diminishes when hydrodynamic friction
is accounted for. In the R = 4µm particle case, the particle also travels less far, but
additionally experiences fewer rotations due to hydrodynamic friction, which is expected
since it is closer to the wall due to its larger size.

S8 Impact of EDL torque, NEDL, in Model III

The weighting factors, g+ and g−, introduced in Eq. 4 in the manuscript, allow contri-
butions from the entire particle surface to the EDL interaction, where interactions from
the face pointing away from the wall contribute significantly less. Figure S14 shows the
UEDL potential (left) and the resulting torque, NEDL, (rigth) as a function of particle
orientation in radians for a SiO2 particle located at z̄ = 6 above a wall with potential
ψw = −50 mV surrounded by water of ionic strength I = 1 · 10−6 M at 300 K with
particle surface potentials of ψ1 = −20 and ψ2 = −40 mV.

Figure S14: UEDL and resulting NEDL when weighting factors, g+ and g−, are used.

Rashidi et al.6 showed in their work that at high ionic strength, only the particle
surface that is within ±(10 − 15)° of the wall surface normal contributes to the EDL
interaction, i.e., the Janus nature of the particle only becomes important when the Janus
boundary is within ±(10 − 15)° of the wall surface normal. To test the impact of the
EDL torque resulting from the use of the weighting factors, g+ and g−, two NEDL torque
functions, N3

EDL and N31
EDL, are constructed that artificially reduce the range within

which the EDL torque acts on the particle to the range observed by Rashidi et al.6 and
one in between. The shape of the original and the two modified torque functions is shown
in Fig. S15, where all curves have been normalized to have a unitary maximum. In N31

EDL

the torque function is zero everywhere except when Janus boundary points toward the
wall within 15° (dashed lines in Fig. S15). The functions are obtained by raising the
original torque NEDL to an odd power. As this mathematical operation strongly affects
the maximum that the torque functions have, i.e., the intensity of the torque, the torque
functions are normalized such that their maximum represents the absolute value of the
original torque at each height z̄ (and for each value of the radius R and all surface
potentials).
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Figure S15: Original and modified torque functions that are zero everywhere except when the Janus
boundary is close to the wall normalized to have unitary maximum.

State Diagrams obtained with NEDL, N
3
EDL, and N

31
EDL are shown in Fig. S16. Note

that Figure S16A is obtained under the same conditions as Figure 6C in the manuscript.

  

Figure S16: State diagram for the model with R = 4 µm, ψ1 = −20 mV, ψ2 = −40 mV and ψw = −50
mV. From left to right, data have been obtained by raising the NEDL torque to the power of 1 (the
original data, blue curve in Fig. S15), to the power of 3 (orange curve in Fig. S15) and to the power of
31 (green curve in Fig. S15)

The main change observed in the state diagrams obtained with N3
EDL and N31

EDL is a
left shift of the position of the down-pointing green triangle (region dominated by con-
stant, non-zero, angular velocity) for thin cap values. Interestingly, the shift is already
observed for very small changes in the torque, N3

EDL, and no additional changes are seen
when a much narrower torque is used, N31

EDL. We believe that this observation confirms

that as a first simplified approximation the weighting factors, g±(θ) =
(1±cos θ)

2
, can be

used. In addition, the disappearance of sinusoidal region (blue) at low shear rates for
thin caps may provide an experimental route to test the accuracy of the weighting factors.
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