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1 Correlated random fields

We use the method described in [1, 2, 3]. That is, we start with a Gaussian white
noise field with zero mean and unit variance φwhite(~r). The second step is to

Fourier transform this field to get φ̃white(~k). As a third step, we choose P (~k) =

|~k|−α. Finally, we define φ̃(~k) = P 1/2(~k)φ̃white(~k) and do the inverse Fourier
transformation to get the correlated field φ(~r) in real space. We note, that

when defining φ̃(~k) in this way, P (~k) is the Fourier transform of the correlation
function C(~r, ~r′) = 〈φ(~r)φ(~r′)〉, which shows, that the random field exhibits
a characteristic distribution of correlation lengths, that is determined by the
chosen power law exponent α. Thus, the larger the value of α, the stronger
is the presence of longer ranged correlations in φ(~r). To guarantee periodic

boundary conditions, we choose ~k = 2π~r
L . Numerically, we generate a lattice

on our simulation box of size L × L. The distance between two lattice sites is
equal to the particle diameter σ (which is sufficient in the absence of temporal
correlations of φ). Then, for every grid point we draw a random number from
a Gaussian distribution with zero mean and unit variance (white noise). After
the Fourier transformation (using the FFTW package in C [4]), these random
numbers are multiplied with the square root of the power spectrum before using
the inverse Fourier transformation to get back to real space.
For each particle, we evaluate the random field at the gridpoint that is closest
to its momentaneous position. Together with volume exclusion interactions
between the particles, our choice of the grid spacing ensures, that neighbouring
particles do not experience identical random forces. In addition, since the noise
field varies very slowly in space compared to the particle size, interpolation
of the random forces at adjacent grid points would not relevantly change our
results. Different realizations of the field for different α are shown in Fig. 1 in
the main text.

2 Numerical simulations

For solving the equations of motions we use a straight forward Euler-Maruyama
scheme, which is reasonable, since the spatially correlated random field is un-
correlated in time, so 〈φ(~r∗, t∗)φ(~r∗, t∗′〉) ∼ δ(t∗ − t∗′). The time discretized
equations are (already in dimensionless units as in the main text)

~r∗i (t
∗ +∆t∗) = ~r∗i (t

∗) + n̂i(t
∗)∆t∗ −∆t∗∇r∗U

∗(r∗)

θ∗i (t
∗ +∆t∗) = θ∗i (t

∗) + ω∗∆t∗ +∆t∗κ∗
∑

j∈∂i

sin(θ∗j − θ∗i ) +
√
∆t∗a∗φα(~r

∗

i , t
∗).
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Figure S1: Snapshots for N = 2500 particles and a correlated random field with
α = 4.0. The colorbar indicates the orientation θi of each particle. (a)-(d) For
ω∗ = 0.0 we observe flocking as described by the Viscek model. The spatial
correlations sometimes pull particles within a flock apart from each other. (e)-
(h) Increasing the rotational frequency to ω∗ = 1.0 leads to the formation of
elongated structures which build again flocks for longer times. Other parameters
are: Φ0 = 0.1, κ∗ = 1.0, ǫ∗ = 1.0 and a∗ = 1.0.

In all simulations we use a time step of ∆t∗ = 10−5.

2.1 Flocking behavior

As already discussed in the main text, for comparatively small rotational fre-
quencies, the system shows flocking, similarly as in the Viscek model, see Fig.
S1 for snapshots.

2.2 Robustness of network patterns against additional Gaus-

sian white noise

To test the robustness of the network patterns (Fig. 2 in the main text) against
thermal fluctuations, we now include additional Gaussian white noise in the
equations of motion of all particles, which corresponds to D,Dr 6= 0 in Eqs.
(1),(2) in the main text. In dimensionless form, the equations now read:

~̇r∗i (t
∗) = n̂i(t

∗)−∇r∗U
∗(r∗) + b∗~ηi(t

∗)

θ̇∗i (t
∗) = ω∗ + κ∗

∑

j∈∂i

sin(θ∗j − θ∗i ) + a∗φα(~r
∗

i , t
∗) + c∗ξi(t

∗),

where ~η and ξ describe white noise with zero mean and unit variance with

parameters b∗ =
√

2D
σv0

and c∗ =
√

2Drσ
v0

. Fig. S2(a)-(d) shows snapshots for

b∗ = 0.01 and c∗ = 0.1. Other parameters are as in Fig. 2 in the main text, i.e.
ω∗ = 3.0 and α = 4.0).
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Figure S2: (a)-(d) Simulation snapshots with additional Gaussian white noise,
where b∗ = 0.01 and c∗ = 0.1. (e)-(h) Snapshots of a simulation, where the
spatially correlated but temporally uncorrelated random field also acts on the
center of mass coordinates of the particles. Here, the amplitude of this additional
field is d∗ = 0.2. (i)-(l) Simulation snapshots for a random field that acts only
on the center of mass coordinate of the particles and not on the orientation
(a∗ = 0.0 and d∗ = 1.0). As in the main text, the color coding indicates the
particle’s orientation. Further parameters in both cases are: ω∗ = 3.0, α = 4.0,
κ∗ = 1.0, ǫ∗ = 1.0, a∗ = 1.0 and Φ0 = 0.1.

2.3 Robustness of network patterns against correlated noise

acting on the center of mass coordinate

Further we explore the influence of correlated random fields acting on the center
of mass coordinate ~r∗i of the particles. Therefore, we introduce three different
Gaussian random fields φα,x, φα,y and φα,θ with identical correlation exponent
α, leading to the following equations of motion:

~̇r∗i = n̂i(t
∗)−∇r∗U

∗(r∗) + d∗~φα(~r
∗, t∗)

θ̇∗i = ω∗ + κ∗
∑

j∈∂i

sin(θ∗j − θ∗i ) + a∗φα,θ(~r
∗

i , t
∗).

Here, ~φα = (φα,x, φα,y) and again, we neglect thermal fluctuations. Fig. S2(e)-
(h) shows snapshots for d∗ = 0.2, ω∗ = 3.0 and α = 4.0. We clearly see that the
network patterns which we discuss in the main text, persist in the presence of
additional noise terms. When further increasing the strength of these additional
noise terms, at some point, the network patterns cease to exist. Additionally,
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Figure S3: Simulation snapshots for the same parameters as in Fig. 2(a)-(d) of
the main text, i.e. for ω∗ = 3.0, α = 4.0, ǫ∗ = 1.0, κ∗ = 1.0 and Φ0 = 0.1, but
with an enhanced amplitude of the random field a∗ = 5.0 ((a)-(d)), an enhanced
alignment strength κ∗ = 10.0 ((e)-(h)) and an enhanced packing fraction Φ0 =
0.2 ((i)-(l)). Colors indicate particle orientations.

we simulate the case, where the correlated random field only acts on the center
of mass coordinate of the particles and not on their orientations and we do not
observe the emergence of network patterns (see Fig. S2(i)-(l) for snapshots).

2.4 Role of alignment strength, amplitude of the random

field and packing fraction

Here we further explore the network patterns by exemplary varying additional
parameters. Fig. S3 shows that the network patterns persist when enhancing
the alignment strength or the density, but they do not form when strongly en-
hancing the amplitude of the correlated noise field. That is, network patterns
require some correlated noise to emerge, but they cease to exist when the fluc-
tuations are too large.

2.5 Role of short-range repulsions

Finally, we explore the influence of volume exclusion interactions between the
particles. Therefore, we perform simulations with ǫ∗ = 0 and find, that also in
that case, network patterns occur (see Fig. S4).
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Figure S4: (a)-(d) Simulation snapshots without steric volume exclusion (ǫ∗ =
0). Colors indicate particle orientations as in Fig. S2. Further parameters are:
ω∗ = 3.0, α = 4.0, κ∗ = 1.0, a∗ = 1.0 and Φ0 = 0.1.

3 Counting holes within a network pattern

For calculating the number of holes in a network pattern (as shown in Fig. 3
in the main text), we divide the simulation box into bins with a width of two
particle diameters and check for each bin, if it contains a particle or not. Then
we use the bwlabel command of MATLAB (adopted to account for periodic
boundary conditions) to find all neighboring bins, which are empty. Finally,
we delete the largest hole which is essentially the environment of the pattern.
Further we introduce a minimal hole size of two bins.

4 Construction of persistence diagrams

In Fig. S5 we illustrate how we construct persistence diagrams from the particle
positions.

5 Characteristic timescales

The physical mechanism underlying the emergence of network patterns, as de-
scribed in the main text, depends on the fact that the lifetime of dimers τc
is long compared to the average attachment time τa for an additional particle
to attach to a dimer. To estimate τa, in our simulations we first calculate the
number of dimers during the simulation (see Fig. S6(a)) and then numerically
calculate τa via

τa =

∫ 600

0
t∗Ndim(t

∗)dt∗
∫ 600

0
Ndim(t∗)dt∗

≈ 162.

Further, to determine the lifetime of dimers, we sequentially initialize 30 dimers
and calculate the distance ddim of the two particles within the dimer. When
the distance is larger than the range of the alignment interaction (ddim > 2),
the dimer counts as broken. We find that with uncorrelated noise, the typical
lifetime of dimers is around τuc ∼ 38, whereas for correlated noise, dimers are
stable over the entire simulation (see Fig. S6(b)).
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Figure S5: (a) For a small d = d1 every particle itself is one connected compo-
nent (H0), born at d = 0. (b) For d2 > d1, some disks overlap, so some of the
connected structures stop to persist, i.e. the corresponding bars in the middle
row do not extend to d2. (c) For an even larger d = d3, all particles form one
single connected component; thus the lower bar in light grey is the only bar that
persists up to d3 in the barcode diagram. In addition, two topological loops (H1)
have formed (dark grey bars). The left endpoints of these bars show their birth
values. (d) At d4 > d3, one of these loops has disappeared (no empty space
between the disks), and accordingly the lower dark grey bar ends at some value
d > d4, which defines the death value of the corresponding topological loop.
The corresponding birth and death values are summarized in the persistence
diagram. Here, the light grey dots on the death axis represent the death values
of the individual connected components (H0) and the dark grey dots show the
birth and death values of topological loops (H1). The persistence diagram is
used in the main text for analyzing the network patterns. Adapted from [5].
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Figure S6: (a) Time evolution of the number of dimers Ndim in the system in
the presence of correlated noise with α = 4.0, ω∗ = 3.0, Φ0 = 0.1. (b) Averaged
distance between two particles which initially build a dimer in the presence of
uncorrelated (blue) and correlated (red) noise.
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6 Movies

In all movies the following parameters are fixed: Φ0 = 0.1, ǫ∗ = 1.0 and κ∗ = 1.0.

• Movie01-flocking: ω∗ = 0.0 and α = 4.0, a∗ = 1.0;

• Movie02-clusters: ω∗ = 1.0 and α = 4.0, a∗ = 1.0;

• Movie03-network-patterns: ω∗ = 3.0 and α = 4.0, a∗ = 1.0;

• Movie04-without-noise: ω∗ = 3.0 and a∗ = 0.0
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