Supporting Information

Co-Assembly of Nanometer- and Submicrometer-Sized Colloidal Particles into Multi-Component Ordered Superstructures

Javier Fonseca,*^a Li Jiao,^a Anna Broto-Ribas^b, Gurvinder Singh,^c and Angang Dong^d

^a Department of Chemical Engineering, Northeastern University, 313 Snell Engineering Center, 360 Huntington Avenue, Boston, Massachusetts 02115-5000, United States.

^b Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona 08193, Spain.

^c The School of Biomedical Engineering, Faculty of IT and Engineering, Sydney Nano Institute, The University of Sydney, Camperdown, NSW 2008, Australia.

^d Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438 China.

> *Corresponding author. E-mail: fonsecagarcia.j@northeastern.edu (Javier Fonseca)

Contents

Table S1. Binary superstructures formed through the co-assembly ofspherical nanoparticles.

Table S2. Binary superstructures formed through the co-assembly of anisotropic nanoparticles.

Table S3. Ternary superstructures formed through the co-assembly ofnanoparticles.

Table S4. Binary superstructures formed through the co-assembly of spherical and anisotropic submicrometer-sized particles.

Table S5. Ternary and quaternary superstructures formed through the co-assembly of submicrometer-sized particles.

Small particles (S) (size in nm) ^(×)	Large particles (L) (size in nm) ^(x)	Particle functionalization	Size ratio (γ) ^(†)	Solvent	Co-assembly approach	Superlattice	Stoichiometry	n _L :n _S	Ref.
Spherical PbSe (6)	Spherical γ -Fe ₂ O ₃ (11)	-	0.55	Dibutyl ether	Solvent evaporation (60 °C)	AlB ₂ -type superlattice	LS ₂	1:2	184
Spherical PbSe (6)	Spherical γ-Fe ₂ O ₃ (11)	-	0.55	Dibutyl ether	Solvent evaporation (60 °C)	NaZn ₁₃ -type superlattice	LS ₁₃	1:13	184
Spherical Pd (3)	Spherical PbSe (5.8)	Pd: DDT PbSe: OA	0.627	Toluene	Solvent evaporation (45-50 °C)	(ico-LS ₁₃ - or) NaZn ₁₃ -type superlattice Cub-LS ₁₃ -type superlattice	LS ₁₃	1:20	29
Spherical CdSe (4.4)	Spherical CdTe (9.1)	CdSe: TOPO and ODA CdTe: ODPA and TOPO	0.57	TCE	Solvent evaporation (55 °C)	AlB ₂ -type superlattices NaZn ₁₃ -type superlattices Cub-LS ₁₃ -type superlattice	LS_2 LS_{13} LS_{13}	-	37,38
Spherical CdSe (4.4)	Spherical CdTe (8.1)	CdSe: TOPO and ODA CdTe: ODPA and TOPO	0.63	TCE	Solvent evaporation (55 °C)	CaCu ₅ -type superlattices NaZn ₁₃ -type superlattices Cub-AB ₁₃ -type superlattices	LS_5 LS_{13} LS_{13}	-	37,38
Spherical CdSe (4.4)	Spherical CdTe (7.0)	CdSe: TOPO and ODA CdTe: ODPA and TOPO	0.71	TCE	Solvent evaporation (55 °C)	CaCu ₅ -type superlattices	LS ₅	-	37,38
Spherical CdSe (4.4)	Spherical CdTe (5.9)	CdSe: TOPO and ODA CdTe: ODPA and TOPO	0.81	TCE	Solvent evaporation (55 °C)	MgZn ₂ -type superlattices	LS ₂	-	37,38
Spherical Au (5)	Spherical Fe (13)	Au: DDT Fe: OA	0.424	Chloroform	Solvent evaporation (RT)	NaCl-type superlattice	LS	-	190
Spherical Au (5)	Spherical γ-Fe ₂ O ₃ (13.4)	DDT, OA, or TOPO	0.43	Toluene or toluene mixture with TCE or chloroform	Solvent evaporation (45 °C)	NaCl-type superlattice AlB ₂ -type superlattice	LS LS ₂	-	31,32
Spherical Pd (3)	Spherical PbSe (7.2)	Pd: DDT PbSe: OA	0.528	Toluene or toluene mixture with TCE or chloroform	Solvent evaporation (45 °C)	NaCl-type superlattice	LS	-	32
Spherical Pd (3)	Spherical PbSe (6.2)	DDT, OA, or TOPO	0.59	Toluene or toluene mixture with TCE or chloroform	Solvent evaporation (45 °C)	NaCl-type superlattice CuAu-type superlattice Orthorhombic symmetry class AlB ₂ -type superlattice MgZn ₂ -type superlattice MgNi ₂ -type superlattice Cu ₃ Au-type superlattice Fe ₄ C-type superlattice NaZn ₁₃ -type superlattice Cub-LS ₁₃ -type superlattice	$\begin{array}{c} LS\\ LS\\ LS\\ LS_2\\ LS_2\\ LS_2\\ LS_2\\ LS_3\\ LS_3\\ LS_{13}\\ LS_{13}\\ LS_{13}\\ LS\\ LS\end{array}$	-	31,32
Spherical Pd (3)	Spherical PbSe (5.8) Spherical PbS	DDT, OA, or TOPO Ag: DDT	0.63	Toluene or toluene mixture with TCE or chloroform Toluene or toluene mixture	Solvent evaporation (45 °C) Solvent evaporation	NaCl-type superlattice AlB ₂ -type superlattice MgNi ₂ -type superlattice Fe ₄ C-type superlattice CaB ₆ -type superlattice NaZn ₁₃ -type superlattice Cub-LS ₁₃ -type superlattice	$\begin{array}{c} \text{LS} \\ \text{LS}_2 \\ \text{LS}_2 \\ \text{LS}_4 \\ \text{LS}_6 \\ \text{LS}_{13} \\ \text{LS}_{13} \end{array}$	-	31,32
(3)	(6.7)	PbSe: OA	0.56	with TCE or chloroform	(45 °C)	CuAu-type superlattice	LS	1:3-1:5	32

Spherical Ag (3.4)	Spherical PbSe (5.8)	Ag: DDT PbSe: OA	0.68	Toluene or toluene mixture with TCE or chloroform	Solvent evaporation (45 °C)	CuAu-type superlattice	LS	1:3-1:5	32
Spherical Au (5)	Spherical PbSe (7.6)	Au: DDT PbSe: OA	0.70	Toluene or toluene mixture with TCE or chloroform	Solvent evaporation (45 °C)	CuAu-type superlattice	LS	1:3-1:5	32
Spherical Au (5)	Spherical PbSe (6.2)	Au: DDT PbSe: OA	0.82	Toluene or toluene mixture with TCE or chloroform	Solvent evaporation (45 °C)	CuAu-type superlattice	LS	1:3-1:5	32
Spherical Pd (3)	Spherical PbSe (5.8)	Pd: DDT PbSe: OA	0.63	Toluene or toluene mixture with TCE or chloroform	Solvent evaporation (45 °C)	Orthorhombic symmetry class	LS	1:3	32
Spherical Ag (4.2)	Spherical PbSe (7.2)	Ag: DDT PbSe: OA	0.66	Toluene or toluene mixture with TCE or chloroform	Solvent evaporation (45 °C)	Orthorhombic symmetry class	LS	1:3	32
Spherical PbSe (5.8)	Spherical Bi (14.4)	DDT, OA, or TOPO	-	Toluene or toluene mixture with TCE or chloroform	Solvent evaporation (45 °C)	AlB ₂ -type superlattice	LS_2	-	31
Spherical PbSe (5.8)	Spherical γ -Fe ₂ O ₃ (13.4)	PbSe: OA γ-Fe ₂ O ₃ : OA	0.5	Toluene or toluene mixture with TCE or chloroform	Solvent evaporation (45 °C)	AlB ₂ -type superlattice	LS_2	-	32
Spherical CoPt ₃ (6.2)	Spherical γ -Fe ₂ O ₃ (13.4)	CoPt ₃ : ACA, HDA γ-Fe ₂ O ₃ : OA	0.54	Toluene or toluene mixture with TCE or chloroform	Solvent evaporation (45 °C)	AlB ₂ -type superlattice	LS_2	-	32
Spherical Pd (3)	Spherical PbSe (6.7)	Pd: DDT PbSe: OA	0.56	Toluene or toluene mixture with TCE or chloroform	Solvent evaporation (45 °C)	AlB ₂ -type superlattice	LS ₂	-	32
Spherical Ag (3.7)	Spherical PbSe (5.8)	Ag: DDT PbSe: OA	0.71	Toluene or toluene mixture with TCE or chloroform	Solvent evaporation (45 °C)	AlB ₂ -type superlattice	LS ₂	-	32
Spherical Au (5.5)	Spherical PbSe (7.2)	Au: DDT PbSe: OA	0.787	Toluene or toluene mixture with TCE or chloroform	Solvent evaporation (45 °C)	AlB ₂ -type superlattice	LS_2	-	32
Spherical Au (6.1)	Spherical γ-Fe ₂ O ₃ (11.5)	Au: DDT γ -Fe ₂ O ₃ : OA	0.53	Toluene	Solvent evaporation (45 °C)	AlB ₂ -type superlattice	LS ₂		181
						Cu_3Au -type superlattice	LS ₃		
Spherical Ag	Spherical PbSe	DDT OA or TOPO	0.66	Toluene or toluene mixture	Solvent evaporation	Fe ₄ C-type superlattice	LS_4	_	31 32
(4.2)	(7.2)	DD1, 0A, 01 10F0	0.00	with TCE or chloroform	(45 °C)	NaZn ₁₃ -type superlattice	LS13		51,52
						Cub-LS ₁₃ -type superlattice	LS ₁₃		
Spherical Ag (3.4)	Spherical PbSe (5.8)	Ag: DDT PbSe: OA	0.68	Toluene or toluene mixture with TCE or chloroform	Solvent evaporation (45 °C)	Cu_3Au -type superlattice	LS ₃	1:7	32
Spherical Ag (3.6)	Spherical PbSe (6.3)	Ag: DDT PbSe: OA	0.66	Toluene or toluene mixture with TCE or chloroform	Solvent evaporation (45 °C)	$CaCu_5$ -type superlattice	LS_5	1:7	32
Spherical Ag (3.6)	Spherical PbSe (6.3)	Ag: DDT PbSe: OA	0.66	Toluene or toluene mixture with TCE or chloroform	Solvent evaporation (45 °C)	$CaCu_5$ -type superlattice	LS ₅	1:7	32
Spherical CoPt ₃ (2.6)	Spherical CoPt ₃ (4.5)	-	0.71	Toluene or toluene mixture with TCE or chloroform	Solvent evaporation	CaCu ₅ -type superlattice	LS ₅	-	406
Spherical Au (5.0)	Spherical PbSe (7.2)	DDT, OA, or TOPO	0.73	Toluene or toluene mixture with TCE or chloroform	Solvent evaporation (45 °C)	CaCu ₅ -type superlattice	LS ₅	1:7	31
Spherical Au (5)	Spherical γ -Fe ₂ O ₃ (13.4)	Au: DDT γ-Fe ₂ O ₃ : OA	0.43	Toluene or toluene mixture with TCE or chloroform	Solvent evaporation (45 °C)	CaB_6 -type superlattice	LS ₆	1:5	32

Table S1. Binary superstructures formed through the co-assembly of spherical nanoparticles (continuation).

Spherical Au (4.6)	Spherical γ -Fe ₂ O ₃ (14.0)	Au: OA γ-Fe ₂ O ₃ : DDT	0.4	Trichloroethylene	Solvent evaporation (50 °C)	CaB ₆ -type superlattice bcc-LS ₆ -type superlattice	LS ₆ LS ₆	1:8	194
Spherical Au (4.6)	Spherical γ -Fe ₂ O ₃ (14.0)	Au: OA γ-Fe ₂ O ₃ : DDT	0.4	Trichloroethylene	Solvent evaporation (50 °C)	(3 ² .4.3.4) Archimedean tiling bcc-LS ₆ -type superlattice	LS ₄ LS ₆	1:5	194
Spherical Au (5.8)	Spherical γ -Fe ₂ O ₃ (14.0)	Au: OA γ-Fe ₂ O ₃ : DDT	0.48	Trichloroethylene	Solvent evaporation (50 °C)	<i>bcc</i> -LS ₆ -type superlattice	LS_6	1:8	194
Spherical CdSe (3.4 ± 0.3)	Spherical PbSe (7.3 ± 0.6)	CdSe: TOPO and HDA PbSe: OA	0.56	TCE	Solvent evaporation (70 °C)	AlB_2 -type superlattice cub- AB_{13} -type superlattice	LS ₂ cub-LS ₁₃	-	211
Spherical PbS (3.1)	Spherical CdSe (8)	PbS: OA CdSe: TDPA-HDA-TOPO-TOP	0.47	n-alkanes	Solvent evaporation (85 °C)	NaCl-type superlattice	LS	1:8	41
Spherical PbS (3.1)	Spherical CdSe (8)	PbS: OA CdSe: TDPA-HDA-TOPO-TOP	0.47	n-alkanes	Solvent evaporation (65 °C)	NaCl-type superlattice AlB ₂ -type superlattice	LS LS ₂	1:8	41
Spherical PbS (3.1)	Spherical CdSe (8)	PbS: OA CdSe: TDPA-HDA-TOPO-TOP	0.47	n-alkanes	Solvent evaporation (40 °C)	AlB ₂ -type superlattice	LS_2	1:8	41
Spherical PbS (3.1)	Spherical CdSe (8)	PbS: OA CdSe: TDPA-HDA-TOPO-TOP	0.47	n-alkanes	Solvent evaporation (25 °C)	AlB ₂ -type superlattice	LS_2	1:8	41
Spherical PbS (3.1)	Spherical CdSe (8)	PbS: OA CdSe: TDPA-HDA-TOPO-TOP	0.47	n-alkanes	Solvent evaporation (0 °C)	AlB ₂ -type superlattice	LS_2	1:8	41
Spherical PbS (3.1)	Spherical CdSe (8)	PbS: OA CdSe: TDPA-HDA-TOPO-TOP	0.47	n-alkanes	Solvent evaporation (-20 °C)	NaZn ₁₃ -type superlattice	LS_{13}	1:8	41
Spherical Pd (3.4)	Spherical PbSe (7.7)	Pd: DDT PbSe: OA	0.53	n-alkanes	Solvent evaporation (100 °C)	CuAu-type superlattice Cu ₃ Au-type superlattice	LS LS ₃	1:9	41
Spherical Pd (3.4)	Spherical PbSe (7.7)	Pd: DDT PbSe: OA	0.53	n-alkanes	Solvent evaporation (85 °C)	CuAu-type superlattice Cu ₃ Au-type superlattice Fe ₄ C-type superlattice	LS LS ₃ LS ₄	1:9	41
Spherical Pd (3.4)	Spherical PbSe (7.7)	Pd: DDT PbSe: OA	0.53	n-alkanes	Solvent evaporation (65 °C)	AlB ₂ -type superlattice Fe ₄ C-type superlattice	LS_2 LS_4	1:9	41
Spherical Pd (3.4)	Spherical PbSe (7.7)	Pd: DDT PbSe: OA	0.53	n-alkanes	Solvent evaporation (40 °C)	CuAu-type superlattice AlB2-type superlattice Cu3Au-type superlattice	LS LS ₂ LS ₃	1:9	41
Spherical Pd (3.4)	Spherical PbSe (7.7)	Pd: DDT PbSe: OA	0.53	n-alkanes	Solvent evaporation (25 °C)	AlB ₂ -type superlattice	LS ₂	1:9	41
Spherical Pd (3.4)	Spherical PbSe (7.7)	Pd: DDT PbSe: OA	0.53	n-alkanes	Solvent evaporation (0 °C)	AlB ₂ -type superlattice	LS_2	1:9	41
Spherical Pd (3.4)	Spherical PbSe (7.7)	Pd: DDT PbSe: OA	0.53	n-alkanes	Solvent evaporation (-20 °C)	CuAu-type superlattice AlB ₂ -type superlattice Cu ₃ Au-type superlattice NaZn ₁₃ -type superlattice	LS LS ₂ LS ₃ LS ₁₃	1:9	41
Spherical Pd (3.4)	Spherical PbSe (7.7)	Pd: DDT PbSe: OA	0.53	n-alkanes	Solvent evaporation (85 °C)	CuAu-type superlattice Cu ₃ Au-type superlattice	LS LS ₃	1:18	41
Spherical Pd (3.4)	Spherical PbSe (7.7)	Pd: DDT PbSe: OA	0.53	n-alkanes	Solvent evaporation (25 °C)	CuAu-type superlattice AlB ₂ -type superlattice Cu ₃ Au-type superlattice Fe ₄ C-type superlattice NaZn ₁₃ -type superlattice	$\begin{array}{c} \text{LS}\\ \text{LS}_2\\ \text{LS}_3\\ \text{LS}_4\\ \text{LS}_{13}\end{array}$	1:18	41

Table S1. Binary superstructures formed through the co-assembly of spherical nanoparticles (continuation).

Spherical Pd (3.4)	Spherical PbSe (7.7)	Pd: DDT PbSe: OA	0.53	n-alkanes	Solvent evaporation (-20 °C)	NaZn ₁₃ -type superlattice	LS ₁₃	1:18	41
Spherical Pd	Spherical PbSe	Pd: DDT PbSe: 04	0.53	n-alkanes	Solvent evaporation	CuAu-type superlattice	LS	1:4.5	41
(3.4)	(7.7)	PDSE. OA			Columnation	CuAu-type superlattice	LS ₃		
(3.4)	(7.7)	PbSe: OA	0.53	n-alkanes	(25 °C)	AlB ₂ -type superlattice	LS ₂	1:4.5	41
Cubouical Dd	Cubovical DbCo	Dd. DDT			Colvent eveneration	Cu ₃ Au-type superlattice	L33		
(3.4)	(7.7)	PbSe: OA	0.53	n-alkanes	(-20 °C)	NaCl-type superlattice	LS	1:4.5	41
Spherical Pd	Spherical PbSe	Pd: DDT PbSe: 04	0.74	n-alkanes	Solvent evaporation	CuAu-type superlattice	LS	1:8	41
Spherical Pd	Snherical PhSe	Pd: DDT			Solvent evanoration	CuAu-type superlattice	LS		
(4.9)	(7.7)	PbSe: OA	0.74	n-alkanes	(85 °C)	CsCl-type superlattice	LS	1:8	41
Spherical Pd	Spherical PbSe	Pd: DDT	0.74	n allranaa	Solvent evaporation	CuAu-type superlattice	LS	1.0	41
(4.9)	(7.7)	PbSe: OA	0.74	II-aikailes	(65 °C)	MgZn ₂ -type superlattice	LS_2	1:0	41
Spherical Pd	Spherical PbSe	Pd: DDT	0.74	n-alkanes	Solvent evaporation	CuAu-type superlattice	LS	1.8	41
(4.9)	(7.7)	PbSe: OA	0.74	ii aixaites	(40 °C)	AlB ₂ -type superlattice	LS ₂	1.0	11
Spherical Pd (4.9)	Spherical PbSe (7.7)	Pd: DDT PbSe: OA	0.74	n-alkanes	Solvent evaporation (25 °C)	NaZn ₁₃ -type superlattice	LS ₁₃	1:8	41
Spherical Pd	Spherical PbSe	Pd: DDT	0.74	n allranag	Solvent evaporation	CuAu-type superlattice	LS	1.6	41
(4.9)	(7.7)	PbSe: OA	0.74	n-aikanes	(85 °C)	CsCl-type superlattice	LS	1:6	41
Spherical Pd	Spherical PbSe	Pd: DDT	0.74	n-alkanes	Solvent evaporation	CuAu-type superlattice	LS	1.6	41
(4.9)	(7.7)	PbSe: OA	0.74	ii-aikaiies	(65 °C)	AlB ₂ -type superlattice	LS ₂	1.0	71
Spherical Pd (4.9)	Spherical PbSe (7.7)	Pd: DDT PbSe: OA	0.74	n-alkanes	Solvent evaporation (25 °C)	$CaCu_5$ -type superlattice	LS_5	1:6	41
Spherical Pd	Spherical PbSe	Pd: DDT	0.74	n-alkanes	Solvent evaporation	CsCl-type superlattice	IS	1.4	41
(4.9)	(7.7)	PbSe: OA	0071	in unitaries	(85 °C)	eser type superlattice			
Spherical Pd	Spherical PbSe	Pd: DDT	0.74	n-alkanes	Solvent evaporation	CuAu-type superlattice	LS	1:4	41
(4.9)	(7.7)	PbSe: OA	-		(65 °C)	AlB ₂ -type superlattice	LS ₂		
Spherical Pd	Spherical PbSe	Pd: DDT	0.74	n-alkanes	Solvent evaporation	CuAu-type superlattice	LS	1:4	41
(4.9)	(7.7)	PbSe: OA			(25 °C)	CaCu ₅ -type superlattice	LS ₅		
Spherical CdSe (5.8)	Spherical PbSe (11)	DDT or DDT and OA	0.53	Hexane	Solvent evaporation (70 °C)	AlB ₂ -type superlattice	LS_2	-	41
Spherical CdSe	Spherical PbSe		0 56	Hoyano	Solvent evaporation	AlB ₂ -type superlattice	LS ₂		41
(5.8)	(10.3)	DDT of DDT and OA	0.30	Hexalle	(70 °C)	NaZn ₁₃ -type superlattice	LS ₁₃	-	41
Spherical CdSe	Spherical PbSe		0.72	11	Solvent evaporation	MgZn ₂ -type superlattice	LS ₂		4.1
(5.8)	(8.0)	DD1 or DD1 and OA	0.75	nexalle	(70 °C)	CaCu ₅ -type superlattice	LS ₅	-	41
Spherical CdSe	Spherical PbSe		0.75	**	Solvent evaporation	MgZn ₂ -type superlattice	LS ₂		4.1
(5.8)	(7.76)	DDT or DDT and OA	0.75	Hexane	(70 °C)	CaCu ₅ -type superlattice	LS ₅	-	41
Spherical Au	Spherical PbSe		0.74		Solvent evaporation	CsCl-type superlattice	LS		4.1
(5.2)	(6.98)	DDT or DDT and OA	0.74	Hexane	(70 °C)	CaCu ₅ -type superlattice	LS ₅	-	41
Spherical Au	Spherical PbSe				Solvent evaporation	CsCl-type superlattice	LS		
(5.8)	(6.98)	DDT or DDT and OA	0.83	Hexane	(70 °C)	CaCu ₅ -type superlattice	LS ₅	-	41
							-		

Table S1. Binary superstructures formed through the co-assembly of spherical nanoparticles (continuation).

Spherical Au (4.1)	Spherical PbS (7)	Au: C ₉ -length saturated hydrocarbon chains PbS: C ₁₈ -length saturated hydrocarbon chains		Octane	Solvent evaporation (50 °C)	$\begin{array}{l} CuAu-type\ superlattice\\ AlB_2-type\ superlattice\\ NaZn_{13}-type\ superlattice \end{array}$	LS LS ₂ LS ₁₃	-	214
Spherical Au (4.1)	Spherical PbS (7)	Au: C₁8-length saturated hydrocarbon chains PbS: C9-length saturated hydrocarbon chains	-	Octane	Solvent evaporation (50 °C)	MgZn ₂ -type superlattice CaCu ₅ -type superlattice	LS ₂ LS ₅	-	214
Spherical Au (4.1)	Spherical γ-Fe ₂ O ₃ (10.2)	Au: C₀-length saturated hydrocarbon chains γ-Fe₂O₃: C₁₀-length saturated hydrocarbon chains	-	Octane	Solvent evaporation (50 °C)	(3 ² .4.3.4) Archimedean tiling DDQC <i>bcc</i> -LS ₆ -type superlattice	LS ₄ LS _{3.84} LS ₆	-	214
Spherical Au (4.1)	Spherical γ -Fe ₂ O ₃ (10.2)	Au: C ₁₈ -length saturated hydrocarbon chains γ-Fe ₂ O ₃ : C ₉ -length saturated hydrocarbon chains	-	Octane	Solvent evaporation (50 °C)	$Li_{3}Bi$ -type superlattices NaZn ₁₃ -type superlattice	LS ₃ LS ₁₃	-	214
Spherical Ag (2.9)	Spherical Ag (11.9)	Ag: OAM	0.42	Toluene	Solvent evaporation (35 °C)	NaCl-type superlattice	LS	1:2 1:4 1:10	217
Spherical Ag (3.7)	Spherical Ag (11.9)	Ag: OAM	0.44	Toluene	Solvent evaporation (35 °C)	NaCl-type superlattice	LS	1:2 1:4 1:10	217
Spherical Ag (3.7)	Spherical Ag (9.6)	Ag: OAM	0.52	Toluene	Solvent evaporation (35 °C)	AlB ₂ -type superlattice	LS ₂	1:2 1:4 1:10	217
Spherical Ag (2.9)	Spherical Ag (8.2)	Ag: OAM	0.55	Toluene	Solvent evaporation (35 °C)	AlB ₂ -type superlattice	LS ₂	1:2 1:4 1:10	217
Spherical Ag (3.7)	Spherical Ag (8.2)	Ag: OAM	0.58	Toluene	Solvent evaporation (35 °C)	AlB ₂ -type superlattice	LS ₂	1:2	217
Spherical Ag (3.7)	Spherical Ag (8.2)	Ag: OAM	0.58	Toluene	Solvent evaporation (35 °C)	AlB ₂ -type superlattice NaZn ₁₃ -type superlattice	LS ₂ LS ₁₃	1:4	217
Spherical Ag (3.7)	Spherical Ag (8.2)	Ag: OAM	0.58	Toluene	Solvent evaporation (35 °C)	$NaZn_{13}$ -type superlattice	LS ₁₃	1:10	217
Spherical Ag (3.7)	Spherical Ag (7.5)	Ag: OAM	0.64	Toluene	Solvent evaporation (35 °C)	NaZn ₁₃ -type superlattice	LS ₁₃	1:2 1:4 1:10	217
Spherical Ag (3.7)	Spherical Ag (5.5)	Ag: OAM	0.79	Toluene	Solvent evaporation (35 °C)	MgZn ₂ -type superlattice	LS_2	1:2 1:4	217
Spherical Ag (5.5)	Spherical Ag (7.5)	Ag: OAM	0.81	Toluene	Solvent evaporation (35 °C)	MgZn ₂ -type superlattice	LS_2	1:2 1:4 1:10	217

Spherical Ag (4.0)	Spherical Ag (11.9)	Small Ag particles: DDT Large Ag particles: OAM	0.42	Toluene	Solvent evaporation (35 °C)	CaB ₆ -type superlattice DDQC	LS ₆ LS _{3.84}	1:2 1:4	217
Spherical Ag (4.0)	Spherical Ag (11.9)	Small Ag particles: DDT Large Ag particles: OAM	0.42	Toluene	Solvent evaporation (35 °C)	CaB ₆ -type superlattice	LS_6	1:10	217
Spherical Au (4.0)	Spherical Ag (11.9)	Small Au particles: DDT Large Ag particles: OAM	0.42	Toluene	Solvent evaporation (35 °C)	CaB ₆ -type superlattice DDQC	LS ₆ LS _{3.84}	1:4	217
Spherical Ag (3.7)	Spherical CoFe ₂ O ₄ (12)	Ag: OAM CoFe ₂ O ₄ : OA	0.42	Toluene	Solvent evaporation (35 °C)	AlB ₂ -type superlattice (3 ² .4.3.4) Archimedean tiling DDQC	LS ₂ LS ₄ LS _{3.84}	1:4	217
Spherical Ag (4)	Spherical CoFe ₂ O ₄ (12)	Ag: DDT CoFe ₂ O ₄ : OA	0.42	Toluene	Solvent evaporation (35 °C)	CaB ₆ -type superlattice DDQC	LS ₆ LS _{3.84}	1:4	217
Spherical Au (3.1)	Spherical PbS (6.3)	Au: nonanethiol (λ=0.77) PbS: nonanoic acid (λ=0.38)	0.57	Octane	Solvent evaporation (50 °C)	NaZn ₁₃ -type superlattice	LS ₁₃	-	221
Spherical Au (3.1)	Spherical PbS (6.3)	Au: DDT (λ=1.01) PbS: nonanoic acid (λ=0.38)	0.61	Octane	Solvent evaporation (50 °C)	NaZn ₁₃ -type superlattice	LS ₁₃	-	221
Spherical Au (3.1)	Spherical PbS (6.3)	Au: nonanethiol (λ=0.77) PbS: myristic acid (λ=0.57)	0.53	Octane	Solvent evaporation (50 °C)	AlB ₂ -type superlattice	LS ₂	-	221
Spherical Au (3.1)	Spherical PbS (6.3)	Au: DDT (λ=1.01) PbS: myristic acid (λ=0.57)	0.56	Octane	Solvent evaporation (50 °C)	AlB ₂ -type superlattice	LS ₂	-	221
Spherical Au (3.1)	Spherical PbS (6.3)	Au: Octadecanethiol (λ=1.47) PbS: myristic acid (λ=0.57)	0.62	Octane	Solvent evaporation (50 °C)	$CaCu_5$ -type superlattice	LS ₅	-	221
Spherical Au (3.1)	Spherical PbS (6.3)	Au: hexanethiol (λ =0.54) PbS: OA (λ =0.66)	0.47	Octane	Solvent evaporation (50 °C)	NaCl-type superlattice	LS	-	221
Spherical Au (3.1)	Spherical PbS (6.3)	Au: nonanethiol (λ =0.77) PbS: OA (λ =0.66)	0.51	Octane	Solvent evaporation (50 °C)	CuAu-type superlattice	LS	-	221
Spherical Au (3.1)	Spherical PbS (6.3)	Au: DDT (λ=1.01) PbS: OA (λ=0.66)	0.54	Octane	Solvent evaporation (50 °C)	Cu ₃ Au-type superlattice NaZn ₁₃ -type superlattice	LS ₃ LS ₁₃	-	221
Spherical Au (3.1)	Spherical PbS (6.3)	Au: Octadecanethiol (λ=1.47) PbS: OA (λ=0.66)	0.60	Octane	Solvent evaporation (50 °C)	$CaCu_5$ -type superlattice	LS ₅		221
Spherical Au (4.3)	Spherical PbS (6.3)	Au: DDT (λ=0.73) PbS: nonanoic acid (λ=0.38)	0.78	Octane	Solvent evaporation (50 °C)	$CaCu_5$ -type superlattice	LS ₅		221
Spherical Au (4.3)	Spherical PbS (6.3)	Au: Octadecanethiol (λ=1.06) PbS: myristic acid (λ=0.57)	0.79	Octane	Solvent evaporation (50 °C)	$CaCu_5$ -type superlattice	LS_5	-	221
Spherical Au (5.1)	Spherical PbS (6.3)	Au: pentadecanethiol (λ =0.75) PbS: myristic acid (λ =0.57)	0.86	Octane	Solvent evaporation (50 °C)	MgZn ₂ -type superlattice CaCu ₅ -type superlattice	LS_2 LS_5	-	221
Spherical Au (5.1)	Spherical PbS (6.3)	Au: DDT (λ=0.61) PbS: OA (λ=0.66)	0.80	Octane	Solvent evaporation (50 °C)	MgZn ₂ -type superlattice CaCu ₅ -type superlattice	LS ₂ LS ₅	-	221
Spherical Au (3.1)	Spherical PbS (7.5)	Au: hexanethiol (λ =0.54) PbS: OA (λ =0.55)	0.41	Octane	Solvent evaporation (50 °C)	NaCl-type superlattice	LS	-	221
Spherical Au (3.1)	Spherical PbS (7.5)	Au: nonanethiol (λ =0.77) PbS: OA (λ =0.55)	0.44	Octane	Solvent evaporation (50 °C)	CuAu-type superlattice	LS	-	221
Spherical Au (3.1)	Spherical PbS (7.5)	Au: DDT (λ=1.01) PbS: OA (λ=0.55)	0.47	Octane	Solvent evaporation (50 °C)	Li ₃ Bi-type superlattice	LS ₃	-	221
Spherical Au (3.1)	Spherical PbS (7.5)	Au: Octadecanethiol (λ =1.47) PbS: OA (λ =0.55)	0.52	Octane	Solvent evaporation (50 °C)	NaZn ₁₃ -type superlattice <i>bcc</i> -LS ₆ -type superlattice	LS ₁₃ LS ₆	-	221

Spherical Au	Spherical PbS	Au: nonanethiol (λ =0.56)	0.57	Octane	Solvent evaporation	CuAu-type superlattice	LS	-	221
(4.3)	(7.5)	PDS: UA (X=0.55)			(50 °C)	AlB ₂ -type superlattice	LS ₂		
Spherical Au	Spherical PbS	Au: DDT (λ =0.73)	0.61	Octane	Solvent evaporation	CuAu-type superlattice	LS	-	221
(4.3)	(7.5)	PbS: OA (λ=0.55)			(50 °C)	NaZn ₁₃ -type superlattice	LS ₁₃		
Spherical Au	Spherical PbS	Au: pentadecanethiol (λ =0.89)	0.64	Octane	Solvent evaporation	CaCu, trme superlattice	15		221
(4.3)	(7.5)	PbS: OA (λ=0.55)	0.01	octune	(50 °C)	Cacu ₅ -type superfattice	L35		221
Spherical Au	Spherical PbS	Au: Octadecanethiol (λ=1.06)	0.67	Octano	Solvent evaporation	MgZn ₂ -type superlattice	LS_2		221
(4.3)	(7.5)	PbS: OA (λ=0.55)	0.07	Octaile	(50 °C)	CaCu ₅ -type superlattice	LS_5	-	221
Spherical Au	Spherical PbS	Au: DDT (λ=0.61)	0.00	O stars a	Solvent evaporation				221
(5.1)	(7.5)	PbS: OA (λ=0.55)	0.09	Octalle	(50 °C)	Cacu ₅ -type superlattice	L35	-	221
Spherical Au	Spherical PbS	Au: pentadecanethiol (λ =0.75)	0.72	O stars a	Solvent evaporation				221
(5.1)	(7.5)	PbS: OA (λ=0.55)	0.73	Octane	(50 °C)	Cacu ₅ -type superlattice	LS_5	-	221
Spherical Au	Spherical PbS	Au: Octadecanethiol (λ =0.89)	0.74	0.1	Solvent evaporation				224
(5.1)	(7.5)	PbS: OA ($\lambda = 0.55$)	0.76	Octane	(50 °C)	CaCu ₅ -type superlattice	LS_5	-	221
Spherical Au	Spherical PbS	Au: hexanethiol (λ =0.54)	0.05	0.1	Solvent evaporation				0.04
(3.1)	(9.3)	PbS: Undecanoic acid (λ =0.31)	0.37	Octane	(50 °C)	NaCl-type superlattice	LS	-	221
Spherical Au	Spherical PhS	Au: nonanethiol (λ =0.77)		2	Solvent evaporation	_			
(3.1)	(9.3)	PhS: Undecanoic acid ($\lambda = 0.31$)	0.40	Octane	(50 °C)	CaB ₆ -type superlattice	LS_6	-	221
Snherical Au	Spherical PhS	Au: DDT (λ =1.01)		_	Solvent evanoration				
(3.1)	(9.3)	PhS: Undecanoic acid (λ =0.31)	0.43	Octane	(50 °C)	<i>bcc</i> -LS ₆ -type superlattice	LS_6	-	221
Spherical Au	Snherical PhS	Au: Octadecanethiol (λ =1.47)			Solvent evanoration				
(2 1)	(9.3)	PhS: Undecanoic acid $(\lambda = 0.31)$	0.47	Octane	(50 °C)	<i>bcc</i> -LS ₆ -type superlattice	LS_6	-	221
	Spherical PhS	Au: heyanethiol $(\lambda = 0.51)$			Solvent evaporation				
(2 1)	(0.2)	$Pbs_{1} OA (2-0.45)$	0.35	Octane	(E0 °C)	NaCl-type superlattice	LS	-	221
(3.1)	(7.5) Subarical DbC	Au popopothiol () =0.77)			<u>Column aution</u>				
Spherical Au	Splielical PDS	Au: nonaneunoi $(\lambda=0.77)$	0.37	Octane	Solvent evaporation	CaB ₆ -type superlattice	LS_6	-	221
(3.1)	(9.5) Carbonical DbC	PDS: 0A (λ=0.45)							
Spherical Au	Spherical PbS	Au: DD1 (λ =1.01)	0.40	Octane	Solvent evaporation	<i>bcc</i> -LS ₆ -type superlattice	LS_6	-	221
(3.1)	(9.3)	PbS: UA (λ=0.45)			(50 °C)				
Spherical Au	Spherical PbS	Au: Octadecanethiol (λ =1.47)	0.44	Octane	Solvent evaporation	<i>bcc</i> -LS ₆ -type superlattice	LS_6	-	221
(3.1)	(9.3)	PbS: 0A (λ=0.45)			(50 °C)		-0		
Spherical Au	Spherical PbS	Au: nonanethiol (λ =0.56)	0.52	Octane	Solvent evaporation	CaCu-type superlattice	LS	-	221
(4.3)	(9.3)	PbS: Undecanoic acid (λ=0.31)	0.02	octane	(50 °C)	DDQC	LS _{3.84}		
Spherical Au	Spherical PbS	Au: DDT (λ=0.73)	0.55	0.1	Solvent evaporation	Li ₃ Bi-type superlattice	LS ₃		0.04
(4.3)	(9.3)	PbS: Undecanoic acid (λ =0.31)	0.55	Octane	(50 °C)	NaZn ₁₃ -type superlattice	LS ₁₃	-	221
Cabadaal Au	Cub surfacel Db C	Au: pentadecanethiol () = 0.89)			Column continu	Li Di tune gunerlettige	16		
Spherical Au	Spherical PDS	Ru . pentauecanetinoi ($\lambda = 0.07$)	0.57	Octane	Solvent evaporation	Li ₃ bi-type superiattice	L33	-	221
(4.3)	(9.3)	PDS: Undecanoic acid (λ =0.31)			(50 °C)	NaZn ₁₃ -type superlattice	LS ₁₃		
Spherical Au	Spherical PbS	Au: Octadecanethiol (λ =1.06)	0.60	Octane	Solvent evaporation	Li ₃ Bi-type superlattice	LS_3		221
(4.3)	(9.3)	PbS: Undecanoic acid (λ=0.31)	0.00	octane	(50 °C)	NaZn ₁₃ -type superlattice	LS_{13}		221
Spherical Au	Spherical PbS	Au: nonanethiol (λ =0.56)	0.40	0.1	Solvent evaporation	CuAu-type superlattice	LS		0.04
(4.3)	(9.3)	PbS: $OA(\lambda=0.45)$	0.48	Octane	(50 °C)	DDOC	LS204	-	221
Spherical Au	Spherical PhS	$\Delta u: DDT (\lambda = 0.73)$			Solvent evanoration	Li-Bi-type superlattice	 LS ₂		
(4.3)	(9.3)	PhS: $\Omega \Delta (\lambda = 0.45)$	0.51	Octane	(50 °C)	Na7n type superlattice	103	-	221
						Li Di timo guporlattico	L3		
Spherical Au	Spherical PbS	Au: pentadecanethiol (λ =0.89)	0.54	Octane	Solvent evaporation	LI ₃ BI-type superiattice	L53	-	221
(4.3)	(9.3)	PbS: 0A (λ=0.45)			(50 °C)	NaZn ₁₃ -type superlattice	LS_{13}		

Table S1. Binary superstructures formed through the co-assembly of spherical nanoparticles (continuation).

Spherical Au (4.3)	Spherical PbS (9.3)	Au: Octadecanethiol (λ =1.06) PhS: OA (λ =0.45)	0.56	Octane	Solvent evaporation (50 °C)	Li ₃ Bi-type superlattice	LS ₃	-	221
Spherical Au (5.1)	Spherical PbS (9.3)	Au: nonanethiol (λ =0.47) PbS: Undecanoic acid (λ =0.31)	0.59	Octane	Solvent evaporation	AlB_2 -type superlattice NaZn ₁₂ -type superlattice	LS ₁₃ LS ₂ LS ₁₃	-	221
Spherical Au (5.1)	Spherical PbS (9.3)	Au: nonanethiol (λ =0.47) PbS: OA (λ =0.45)	0.55	Octane	Solvent evaporation (50 °C)	AlB ₂ -type superlattice	LS ₂	-	221
Spherical Au (5.1)	Spherical PbS (9.3)	Au: DDT (λ=0.61) PbS: OA (λ=0.45)	0.58	Octane	Solvent evaporation (50 °C)	CuAu-type superlattice Cu ₃ Au-type superlattice	LS LS ₃	-	221
Spherical Au (5.1)	Spherical PbS (9.3)	Au: Octadecanethiol (λ=0.89) PbS: OA (λ=0.45)	0.64	Octane	Solvent evaporation (50 °C)	$CaCu_5$ -type superlattice	LS_5	-	221
Spherical Au (5)	Spherical γ-Fe ₂ O ₃ (13.4)	Au: DDT Fe₃O₄: OA	0.43 ± 0.01	TCE	Solvent evaporation (50 °C)	AlB ₂ -type superlattice DDQC (3 ² .4.3.4) Archimedean tiling (3 ³ .4 ²) Archimedean tiling CaB ₆ -type superlattice	${f LS_2}\ {f LS_{3,84}}\ {f LS_4}\ {f LS_4}\ {f LS_4}\ {f LS_4}\ {f LS_4}\ {f LS_6}$	-	33
Spherical Au (4.7)	Spherical γ-Fe ₂ O ₃ (12.6)	Au: DDT Fe ₃ O ₄ : OA	0.43 ± 0.01	TCE	Solvent evaporation (50 °C)	DDQC	LS _{3.84}	-	33
Spherical Pd (3)	Spherical PbS (9)	-	0.43 ± 0.01	TCE	Solvent evaporation (50 °C)	DDQC	LS _{3.84}	-	33
Spherical {Mo ₁₃₂ } (2.9)	Spherical PbS (10.7)	Mo ₁₃₂ : DDA PbS: OA	0.41	Toluene and chlorobenzene	Solvent evaporation (50 °C)	NaCl-type superlattice AlB ₂ -type superlattice <i>bcc</i> -LS ₆ -type superlattice NaZn ₁₃ -type superlattice	LS LS ₂ LS ₆ LS ₁₃	-	206
Spherical {Mo ₁₃₂ } (2.9)	Spherical PbS (8.1)	Mo ₁₃₂ : DDA PbS: OA	0.51	Toluene and chlorobenzene	Solvent evaporation (50 °C)	NaCl-type superlattice AlB ₂ -type superlattice DDQC NaZn ₁₃ -type superlattice	LS LS ₂ LS _{3.84} LS ₁₃	-	206
Spherical {Mo ₁₃₂ } (2.9)	Spherical PbS (6.6)	Mo ₁₃₂ : DDA PbS: OA	0.58	Toluene and chlorobenzene	Solvent evaporation (50 °C)	NaCl-type superlattice AlB ₂ -type superlattice NaZn ₁₃ -type superlattice	LS LS ₂ LS ₁₃	-	206
Spherical {Mo ₁₃₂ } (2.9)	Spherical PbS (4.7)	Mo ₁₃₂ : DDA PbS: OA	0.74	Toluene and chlorobenzene	Solvent evaporation (50 °C)	NaCl-type superlattice AlB ₂ -type superlattice CaCu ₅ -type superlattice NaZn ₁₃ -type superlattice	$\begin{array}{c} \text{LS} \\ \text{LS}_2 \\ \text{LS}_5 \\ \text{LS}_{13} \end{array}$	-	206
Spherical Ag (4.0)	Spherical amorphous- phase Co (9.2)	Ag: DDT Co: OA	0.49	Toluene	Solvent evaporation (25 °C)	NaCl-type superlattice	LS	2:1	208
Spherical Ag (4.0)	Spherical <i>hcp</i> -phase Co (9.3)	Ag: DDT Co: OA	0.49	Toluene	Solvent evaporation (25 °C)	CuAu-type superlattice Cu ₃ Au-type superlattice DDQC NaZn ₁₃ -type superlattice	LS LS ₃ LS _{3.84} LS ₁₃	2:1	208
Spherical Ag (4.0)	Spherical amorphous- phase Co (9.2)	Ag: DDT Co: OA	0.49	Toluene	Solvent evaporation (65 °C)	AlB ₂ -type superlattice Cu ₃ Au-type superlattice	LS ₂ LS ₃	2:1	208
Spherical Ag (4.0)	Spherical <i>hcp</i> -phase Co (9.3)	Ag: DDT Co: OA	0.49	Toluene	Solvent evaporation (65 °C)	AlB ₂ -type superlattice Cu ₃ Au-type superlattice	LS ₂ LS ₃	2:1	208

Spherical Ag (4.0)	Spherical amorphous- phase Co (7.2)	Ag: DDT Co: OA	0.59	Toluene	Solvent evaporation (25 °C)	AlB ₂ -type superlattice	LS ₂	2:1	208
Spherical Ag (4.0)	Spherical <i>hcp</i> -phase Co (7.1)	Ag: DDT Co: OA	0.59	Toluene	Solvent evaporation (25 °C)	AlB ₂ -type superlattice	LS ₂	2:1	208
Spherical Au (4.5)	Spherical hollow core- shell iron/iron oxide (11.7)	-	-	Toluene and TCE	Solvent evaporation (40-50 °C)	NaCl-type superlattice	LS	1:2	241
Spherical Au (4.5)	Spherical hollow core- shell iron/iron oxide (11.7)	DDT	-	Toluene and TCE	Solvent evaporation (40-50 °C)	NiAs-type superlattice	LS	1:2	241
Spherical Au (4.5)	Spherical hollow core- shell iron/iron oxide (11.7)	DDT	-	Toluene and TCE	Solvent evaporation (40-50 °C)	NiAs-type superlattice AlB ₂ -type superlattice	LS LS ₂	1:2	241
Spherical Au (4.5)	Spherical hollow core- shell iron/iron oxide (11.7)	-	-	Toluene and TCE	Solvent evaporation (40-50 °C)	AlB ₂ -type superlattice	LS ₂	1:4-5	241
Spherical Au (4.5)	Spherical hollow core- shell iron/iron oxide (11.7)	OA	-	Toluene and TCE	Solvent evaporation (40-50 °C)	AlB ₂ -type superlattice	LS ₂	1:3	241
Spherical Au (4.5)	Spherical hollow core- shell iron/iron oxide (11.7)	-	-	Toluene and TCE	Solvent evaporation (40-50 °C)	$NaZn_{13}$ -type superlattice cub-AB ₁₃ -type superlattice	LS ₁₃ LS ₁₃	1:6-8	241
Spherical Au (4.5)	Spherical hollow core- shell iron/iron oxide (11.7)	OAM	-	Toluene and TCE	Solvent evaporation (40-50 °C)	$NaZn_{13}$ -type superlattice cub-AB ₁₃ -type superlattice	LS ₁₃ LS ₁₃	1:6-8	241
Spherical Ag (4.0)	Spherical Ag (11.9)	Small Ag particles: DDT Large Ag particles: OAM	0.42	Hexane (on DEG)	Air-liquid interface	NaCl-type superlattice	LS	1:4	217
Spherical FePt (6)	Spherical Fe ₃ O ₄ (15)	-	-	Hexane (on DEG)	Air-liquid interface	AlB ₂ -type superlattice Cu ₃ Au-type superlattice NaZn ₁₃ -type superlattice	LS ₂ LS ₃ LS ₁₃	1:3	248
Spherical Au (3.8)	Spherical Fe ₃ O ₄ (13.4)	Au: Atactic PS ($M_n = 3.0 \text{ k}$) Fe ₃ O ₄ : Atactic PS ($M_n = 5.3 \text{ k}$)	0.49	Toluene (on DEG)	Air-liquid interface	$NaZn_{13}$ -type superlattice	LS ₁₃	1:15	254
Spherical Au (3.8)	Spherical Fe_3O_4 (13.4)	Au: Atactic PS ($M_n = 3.0 \text{ k}$) Fe ₃ O ₄ : Atactic PS ($M_n = 5.3 \text{ k}$)	0.49	Toluene (on DEG)	Air-liquid interface	<i>bcc</i> -LS ₆ -type superlattice	LS ₆	1:7	254
Spherical Au (4.2)	Spherical Fe_3O_4 (13.4)	Au: Atactic PS ($M_n = 1.1 \text{ k}$) Fe ₃ O ₄ : Atactic PS ($M_n = 5.3 \text{ k}$)	0.40	Toluene (on DEG)	Air-liquid interface	NaCl-type superlattice	LS	-	254
Spherical Au (4.2)	Spherical Fe ₃ O ₄ (13.4)	Au: Atactic PS ($M_n = 5.3 \text{ k}$) Fe ₃ O ₄ : Atactic PS ($M_n = 5.3 \text{ k}$)	0.69	Toluene (on DEG)	Air-liquid interface	MgZn ₂ -type superlattice CaCu ₅ -type superlattice	LS ₂ LS ₅	-	254
Spherical Au (6.4)	Spherical Fe ₃ O ₄ (16.5)	OA and/or OAM	0.44	Hexane (on DEG)	Air-liquid interface	2D LS-type superlattice	LS	-	253

Spherical FePt (5.5)	Spherical Fe ₃ O ₄ (16.5)	OA and/or OAM	0.40	Hexane (on DEG)	Air-liquid interface	2D LS-type superlattice	LS	-	253
Spherical Fe ₃ O ₄ (13.5)	Spherical NaYF₄:Yb/Er (28.9)	OA and/or OAM	0.49	Hexane (on DEG)	Air-liquid interface	2D LS-type superlattice	LS	-	253
Spherical FePt (3.1)	Spherical Fe ₃ O ₄ (16.5)	OA and/or OAM	0.26	Hexane (on DEG)	Air-liquid interface	2D LS ₂ -type superlattice	LS_2	-	253
Spherical Au (6.4)	Spherical Fe ₃ O ₄ (11.2)	OA and/or OAM	0.63	Hexane (on DEG)	Air-liquid interface	2D L_2S_3 -type superlattice	L_2S_3	-	253
Spherical FePt (6.0)	Spherical Fe ₃ O ₄ (16.5)	OA and/or OAM	0.42	Hexane (on DEG)	Air-liquid interface	2D LS ₃ -type superlattice	LS_3	-	253
Spherical Ag (4.8)	Spherical Au (5.1)	Ag: TMA Au: MUA	0.97	Water	Electrostatic	Diamond-type (or sphalerite-type) superlattice	LS	-	49
Spherical Au (11.4)	Spherical Au (11.4)	DNA	-	Water	DNA-guided	CsCl-type superlattice	LS	-	278
Spherical Au (12.5)	Spherical Au (12.5)	DNA	-	Water	DNA-guided	CsCl-type superlattice	LS	-	278
Spherical Au (5)	Spherical Au (9.7)	DNA (DNA linker ratio = 3)	0.75	water	DNA-guided	CsCl-type superlattice	LS	-	256
Spherical Au (2.5)	Spherical Au (4.4)	DNA (DNA linker ratio = 0.4)	0.61	water	DNA-guided	CsCl-type superlattice	LS	-	256
Spherical Au (5)	Spherical Au (9.5)	DNA (DNA linker ratio = 0.5)	0.76	water	DNA-guided	CsCl-type superlattice	LS	-	256
Spherical Au (5)	Spherical Au (10.2)	DNA (DNA linker ratio = 0.5)	1	water	DNA-guided	CsCl-type superlattice	LS	-	256
Spherical Au (5)	Spherical Au (10.2)	DNA (DNA linker ratio = 0.5)	0.85	water	DNA-guided	CsCl-type superlattice	LS	-	256
Spherical Au (5)	Spherical Au (15.8)	DNA (DNA linker ratio = 0.2)	0.99	water	DNA-guided	CsCl-type superlattice	LS	-	256
Spherical Au (9.7)	Spherical Au (19.2)	DNA (DNA linker ratio = 0.3)	0.98	water	DNA-guided	CsCl-type superlattice	LS	-	256
Spherical Au (14.8)	Spherical Au (24.5)	DNA (DNA linker ratio = 0.3)	0.99	water	DNA-guided	CsCl-type superlattice	LS	-	256
Spherical Au (14.8)	Spherical Au (29)	DNA (DNA linker ratio = 0.2)	0.94	water	DNA-guided	CsCl-type superlattice	LS	-	256
Spherical Au (19.2)	Spherical Au (29)	DNA (DNA linker ratio = 0.4)	0.99	water	DNA-guided	CsCl-type superlattice	LS	-	256
Spherical Au (2.5)	Spherical Au (4.4)	DNA (DNA linker ratio = 2)	0.6	water	DNA-guided	AlB ₂ -type superlattice	LS ₂	-	256
Spherical Au (4.6)	Spherical Au (4.6)	DNA (DNA linker ratio = 1)	0.56	water	DNA-guided	AlB ₂ -type superlattice	LS ₂	-	256
Spherical Au (4.9)	Spherical Au (4.9)	DNA (DNA linker ratio = 1)	0.38	water	DNA-guided	AlB ₂ -type superlattice	LS ₂	-	256
Spherical Au (4.9)	Spherical Au (9.5)	DNA (DNA linker ratio = 1.5)	0.55	water	DNA-guided	AlB ₂ -type superlattice	LS ₂	-	256

Table S1. Binary superstructures formed through the co-assembly of spherical nanoparticles (continuation).

Spherical Au	Spherical Au	DNA	0.47	water	DNA-guided	AlB ₂ -type superlattice	LS_2	-	256
(4.9)	(9.5)	(DNA linker ratio = 1.5)							
Spherical Au (5)	Spherical Au (9.7)	DNA (DNA linker ratio = 3)	0.51	water	DNA-guided	AlB ₂ -type superlattice	LS_2	-	256
Spherical Au	Spherical Au	DNA (DNA linkon natio = 1.5)	0.41	water	DNA-guided	AlB ₂ -type superlattice	LS ₂	-	256
(4.9) Sphorical Au	(9.5) Sphorical Au	DNA							
(9.8)	(14.4)	(DNA linker ratio = 3)	0.55	water	DNA-guided	AlB ₂ -type superlattice	LS ₂	-	256
Spherical Au	Spherical Au (15.8)	DNA (DNA linker ratio = 2.4)	0.64	water	DNA-guided	AlB ₂ -type superlattice	LS_2	-	256
Snherical Au	Snherical Au	DNA							
(4.6)	(7.5)	(DNA linker ratio = 2)	0.37	water	DNA-guided	Cr ₃ Si-type superlattice	LS_3	-	256
Spherical Au (4.6)	Spherical Au (7 5)	DNA (DNA linker ratio = 2.5)	0.51	water	DNA-guided	Cr ₃ Si-type superlattice	LS_3	-	256
Spherical Au	Spherical Au	DNA	0.43	water	DNA guided	Cr. Si tuno superlattico	I S.	_	256
(9.8)	(14.4)	(DNA linker ratio = 2.25)	0.45	water	DNA-guided	CI 351-type superlattice	153		230
Spherical Au (4.6)	Spherical Au (9.7)	DNA (DNA linker ratio = 3)	0.35	water	DNA-guided	Cr ₃ Si-type superlattice	LS_3	-	256
Spherical Au	Spherical Au	DNA (DNA linker ratio = 2)	0.48	water	DNA-guided	<i>bcc</i> -LS ₆ -type superlattice	LS ₆	-	256
(4.0) Sphorical Au	(9.0) Sphorical Au								
(7.5)	(15.8)	(DNA linker ratio = 2.25)	0.37	water	DNA-guided	<i>bcc</i> -LS ₆ -type superlattice	LS_6	-	256
Spherical Fe ₃ O ₄ (5.4)	Spherical Fe ₃ O ₄ (13.5)	5.4 nm Fe ₃ O ₄ : Pentaethylenehexamine- terminated polystyrene 13.5 nm Fe ₃ O ₄ : Diethylenetriamine-terminated polystyrene	0.61	Toluene	Spin-coating	NaZn ₁₃ -type superlattice	LS ₁₃	-	308
Spherical Au (4)	Spherical Au (8)	1-hexadecanethiol	-	Hexane	Emulsion-assisted (Hexane-in-water, surfactant: Triton X-100)	$NaZn_{13}$ -type superlattice	LS ₁₃	-	250
Spherical Au (5)	Spherical γ -Fe ₂ O ₃ (10)	OA or DDT	0.5	Hexane	Emulsion-assisted (Hexane-in-water)	NaZn ₁₃ -type superlattice	LS ₁₃	1:15	315
Spherical CoFe ₂ O ₄ (8.0)	Spherical Fe ₃ O ₄ (17)	-	-	Hexane	Emulsion-assisted (Hexane-in-water, surfactant: DTAB)	NaZn ₁₃ -type superlattices	LS ₁₃	1:13	319
Spherical CoFe ₂ O ₄ (8.5)	Spherical Fe ₃ O ₄ (17)	-	-	Hexane	Emulsion-assisted (Hexane-in-water, surfactant: DTAB)	NaZn ₁₃ -type superlattices	LS ₁₃	1:13	319
Spherical CoFe ₂ O ₄ (4.5)	Spherical Fe ₃ O ₄ (11)	-	-	Hexane	Emulsion-assisted (Hexane-in-water, surfactant: DTAB)	AlB ₂ -type superlattices	LS_2	-	319
Spherical Fe_3O_4 (6.5)	Spherical Fe ₃ O ₄ (9)	-	-	Hexane	Emulsion-assisted (Hexane-in-water, surfactant: DTAB)	MgZn ₂ -type superlattices	LS_2	-	319

Spherical CoFe ₂ O ₄ (4.5)	Spherical Fe ₃ O ₄ (7)	-	-	Hexane	Emulsion-assisted (Hexane-in-water, surfactant: DTAB)	$CaCu_5$ -type superlattices	LS_5	-	319
Spherical CoFe ₂ O ₄ (4.5)	Spherical Fe ₃ O ₄ (15)	-	-	Hexane	Emulsion-assisted (Hexane-in-water, surfactant: DTAB)	NaCl-type superlattices	LS	-	319
Spherical CdSe (8)	Spherical CoFe ₂ O ₄ (20)	OA	0.48	TCE	Emulsion-assisted (TCE-in-FC-40, or TCE-in-FC-70, microfluidic)	AlB ₂ -type superlattices	LS_2	-	149
Spherical PbS (10)	Spherical CoFe ₂ O ₄ (20)	OA	0.54	TCE	Emulsion-assisted (TCE-in-FC-40, or TCE-in-FC-70, microfluidic)	AlB ₂ -type superlattices	LS ₂	-	149

Notation: (\varkappa) The size refers to that of the core particles; (†) The size ratio (γ) is the effective size ratio, calculated using the effective diameters (d_{eff} , where $d_{eff} = d_{core} + 2d_{shell}$, being d_{core} the core diameter and d_{shell} the shell thickness); DDT, dodecanethiol; OA, oleic acid; TOPO, tri-n-octylphosphine oxide; ODA, octadecylamine; ODPA, octadecylphosphonic acid; TCE, tetrachloroethylene; RT, room temperature; ACA, 1-adamantanecarboxylic acid; HDA, hexadecylamine; TOP, trioctylphosphine; TDPA, tetradecylphosphonic acid; DDQC, dodecagonal quasicrystal; OAM, oleylamine; C₁₀-thiol, alkanethiol; DEG, diethylene glycol; TMA, HS(CH₂)₁₁NMe₃+Cl⁻; MUA, HS(CH₂)₁₀COOH; FC-40, perfluoro-di-nbutylmethylamine; FC-70, perfluorotripentylamine; DDA, dodecyldimethylammonium cations; DEG, diethylene glycol; DDQC, dodecagonal quasicrystal; DTAB, dodecyltrimethylammonium bromide; DNA, deoxyribonucleic acid.

Small particles (S) (size in nm) ^(x)	Large particles (L) (size in nm) ^(x)	Particle functionalization	Size ratio (γ) ^(†)	Solvent	Co-assembly approach	Superlattice	Stoichiometry	n _L :n _S	Ref.
Truncated cuboctahedra Au (4.5) Resembling spherical shape	Icosahedral or decahedral Au (7.8) Resembling spherical shape	C ₁₀ -thiol	0.58	Toluene	Solvent evaporation	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	LS ₂	-	24
Spherical Au (3)	LaF ₃ triangular nanoplates (9)	DDT, OA, or TOPO	0.33	Toluene or toluene mixture with TCE or chloroform	Solvent evaporation	-	-	-	31
Spherical Au (3)	LaF ₃ triangular nanoplates (9)	DDT, OA, or TOPO	0.33	Toluene or toluene mixture with TCE or chloroform	Solvent evaporation	-	-	-	31
Spherical Au (6.2)	LaF ₃ triangular nanoplates (9)	DDT, OA, or TOPO	0.69	Toluene or toluene mixture with TCE or chloroform	Solvent evaporation	-	-	-	31
Cubic CsPbBr ₃ (5.3)	LaF ₃ nanodisks (12.5)	CsPbBr ₃ .DDAB LaF ₃ : OA	0.430	Toluene or octane	Solvent evaporation (RT)	Columnar LS(I)-type superlattice: vertically oriented stacks of nanodisks created a simple square columnar lattice with <i>p</i> 4 <i>mm</i> plane group symmetry, while nanocube pillars filled the space between the disk columns	LS	-	234
Cubic CsPbBr ₃ (5.3)	LaF ₃ nanodisks (13.3)	CsPbBr _{3:} DDAB LaF ₃ : OA	0.408	Toluene or octane	Solvent evaporation (RT)	Columnar LS(I)-type superlattice	LS	-	234
Cubic CsPbBr ₃ (5.3)	LaF ₃ nanodisks (16.6)	CsPbBr _{3:} DDAB LaF ₃ : OA	0.337	Toluene or octane	Solvent evaporation (RT)	Columnar LS(I)-type superlattice	LS	-	234
Cubic CsPbBr ₃ (5.3)	LaF ₃ nanodisks (18.5)	CsPbBr _{3:} DDAB LaF ₃ : OA	0.306	Toluene or octane	Solvent evaporation (RT)	Columnar LS(I)-type superlattice	LS	-	234
Cubic CsPbBr ₃ (8.6)	LaF ₃ nanodisks (26.5)	CsPbBr _{3:} DDAB LaF ₃ : OA	0.335	Toluene or octane	Solvent evaporation (RT)	Columnar LS(I)-type superlattice	LS	-	234
Cubic CsPbBr ₃ (5.3)	LaF3 nanodisks (26.5)	CsPbBr ₃ : DDAB LaF ₃ : OA	0.221	Toluene or octane	Solvent evaporation (RT)	Columnar LS ₂ (I)-type superlattice with a <i>c2mm</i> symmetry: two nanocube pillars filled the spaces between every four nanodisk columns	LS ₂	-	234
Cubic CsPbBr ₃ (5.3)	LaF ₃ nanodisks (12.5)	CsPbBr _{3:} DDAB LaF ₃ : OA	0.430	Toluene or octane	Solvent evaporation (RT)	Columnar LS ₂ (II)-type superlattice: a centered rectangular lattice with LS ₂ stoichiometry and c2mm symmetry	LS ₂	-	234
Cubic CsPbBr ₃ (5.3)	LaF ₃ nanodisks (12.5)	CsPbBr ₃ .DDAB LaF ₃ : OA	0.430	Toluene or octane	Solvent evaporation (RT)	Columnar LS ₄ -type superlattice: columns of nanodisks arranged in a simple hexagonal lattice were uniformly surrounded by nanocubes	LS ₄	-	234
Cubic CsPbBr ₃ (5.3)	LaF ₃ nanodisks (21.0)	CsPbBr ₃ : DDAB LaF ₃ : OA	0.273	Toluene or octane	Solvent evaporation (RT)	Columnar LS ₆ -type superlattice: 12 distinct pillars of nanocubes arranged in a dodecagonal pattern around columns of nanodisks	LS ₆	-	234

Table 2. Binary superstructures formed through the co-assembly of anisotropic nanoparticles.

Cubic CsPbBr ₃ (5.3)	LaF ₃ nanodisks (28.4)	CsPbBr _{3:} DDAB LaF ₃ : OA	0.207	Toluene or octane	Solvent evaporation (RT)	Columnar LS_6 -type superlattice	LS ₆	-	234
Cubic CsPbBr ₃ (5.3)	LaF ₃ nanodisks (9.2)	CsPbBr _{3:} DDAB LaF ₃ : OA	0.555	Toluene or octane	Solvent evaporation (RT)	Columnar LS(II)-type superlattice: pairs of nanocube columns occupied interstitial sites created by six columns of adjacent disks	LS	-	234
Cubic CsPbBr ₃ (8.6)	LaF ₃ nanodisks (18.5)	CsPbBr _{3:} DDAB LaF ₃ : OA	0.463	Toluene or octane	Solvent evaporation (RT)	Lamellar LS(I)-type superlattice: alternated one-dimensional strings of nanodisks and nanocubes stacked face- to-face on the substrate	LS	-	234
Cubic CsPbBr₃ (5.3)	LaF ₃ nanodisks (6.5)	CsPbBr ₃ : DDAB LaF ₃ : OA	-	Toluene or octane	Solvent evaporation (RT)	Lamellar L_2 S-type superlattice: each chain of nanocubes was surrounded by six chains of nanodisks	L_2S	-	234
Cubic CsPbBr ₃ (8.6)	LaF ₃ nanodisks (12.5)	CsPbBr _{3:} DDAB LaF ₃ : OA	-	Toluene or octane	Solvent evaporation (RT)	NaCl-type superlattice: clusters of three disks occupying individual lattice sites in the <i>fcc</i> sublattice	LS	-	234
Cubic CsPbBr ₃ (8.6)	LaF ₃ nanodisks (9)	CsPbBr ₃ .DDAB LaF ₃ : OA	-	Toluene or octane	Solvent evaporation (RT)	ReO ₃ -type superlattice: the nanocubes occupy the primitive positions of the unit cell, forming a simple cubic arrangement, while the nanodisks are positioned between the nanocubes, aligned face-to-face	LS_3	-	234
Cubic CsPbBr ₃ (8.6)	LaF ₃ nanodisks (6.5)	CsPbBr _{3:} DDAB LaF ₃ : OA	-	Toluene or octane	Solvent evaporation (RT)	Disrupted ReO ₃ -type superlattice	LS ₃	-	234
Cubic CsPbBr ₃ (8.6)	Spherical NaGdF ₄ (18.6)	CsPbBr _{3:} DDAB NaGdF ₄ : OA	0.439	Toluene	Solvent evaporation (RT)	NaCl-type superlattice	LS	1:1.2	240
Cubic CsPbBr ₃ (8.6)	Spherical NaGdF ₄ (16.5)	CsPbBr _{3:} DDAB NaGdF ₄ : OA	0.495	Toluene	Solvent evaporation (RT)	$CaTiO_3$ -type superlattice	LS_4	1:4.2	240
Cubic CsPbBr ₃ (8.6)	Spherical NaGdF ₄ (16.5)	CsPbBr _{3:} DDAB NaGdF ₄ : OA	0.495	Toluene	Solvent evaporation (RT)	AlB ₂ -type superlattice	LS_2	1:2.2	240
Cubic CsPbBr ₃ (8.6)	Spherical Fe ₃ O ₄ (19.8)	CsPbBr _{3:} DDAB Fe ₃ O ₄ : OA	0.414	Toluene	Solvent evaporation (RT)	AlB ₂ -type superlattice	LS_2	1:2.2	240
Cubic CsPbBr ₃ (5.3)	Spherical Fe ₃ O ₄ (11.2-15.6)	CsPbBr _{3:} DDAB Fe ₃ O ₄ : OA	0.443 - 0.336	Toluene	Solvent evaporation (RT)	AlB ₂ -type superlattice AB ₂ -type superlattice	LS_2 LS_2	1:2.2	240
Cubic CsPbBr ₃ (5.3)	Spherical Fe ₃ O ₄ (16.9)	CsPbBr _{3:} DDAB Fe ₃ O ₄ : OA	0.315	Toluene	Solvent evaporation (RT)	ABO ₆ -type superlattice	LS ₇	1:12	240
Cubic CsPbBr ₃ (5.3)	Spherical Fe ₃ O ₄ (15.2)	CsPbBr _{3:} DDAB Fe ₃ O ₄ : OA	0.344	Toluene	Solvent evaporation (RT)	NaCl-type superlattice AlB ₂ -type superlattice AB ₂ -type superlattice CaTiO ₃ -type superlattice	LS LS ₂ LS ₂ LS ₄	-	240
Cubic CsPbBr ₃ (8.6)	Truncated cuboidal PbS (10.7-11.7)	CsPbBr _{3:} DDAB PbS: OA	0.72-0.78	Toluene	Solvent evaporation (RT)	NaCl-type superlattice CuAu-type superlattice CaTiO ₃ -type superlattice	LS LS LS4	-	240

Table 2. Binary superstructures formed through the co-assembly of anisotropic nanoparticles (continuation).

Cubic CsPbBr ₃ (5.3)	Truncated cuboidal PbS (10.7)	CsPbBr _{3:} DDAB PbS: OA	-	Toluene	Solvent evaporation (RT)	AlB ₂ -type superlattice	LS ₂	-	240
Cubic CsPbBr ₃ (8.6)	Disk-shaped NaGdF ₄ (31.5 nm in diameter and 18.5 nm thick)	CsPbBr _{3:} DDAB NaGdF ₄ : OA	-	Toluene	Solvent evaporation (RT)	CaC ₂ -type superlattice	LS ₂	-	240
Cubic FAPbBr ₃ (9)	Spherical NaGdF ₄ (15.1-19.5)	FAPbBr _{3:} - NaGdF ₄ : OA	-	Toluene	Solvent evaporation (RT)	AlB_2 -type superlattice AB_2 -type superlattice CaTiO_3-type superlattice	LS ₂ LS ₂ LS ₄	-	240
Cubic FAPbBr ₃ (5.7)	Spherical NaGdF ₄ (15.1)	FAPbBr _{3:} - NaGdF ₄ : OA	-	Toluene	Solvent evaporation (RT)	NaCl-type superlattice	LS	-	240
Cubic CsPbBr ₃ (8.6)	Spherical Fe ₃ O ₄ (19.5)	CsPbBr ₃ : DDAB Fe ₃ O ₄ : OA	0.420	Toluene	Solvent evaporation (RT)	NaCl-type superlattices AlB ₂ -type superlattices CaTiO ₃ -type superlattice	LS LS ₂ LS ₄	-	242
Spherical β-NaGdF ₄ (9)	GdF ₃ nanoplates: ellipsoidal (16 nm by 10 nm) or rhombic (35 nm by 25 nm)	-	-	Hexane (on DEG)	Air-liquid interface	The nanoplates stack face-to-face and edge-on, forming an ordered lamellar structure with their long axes aligned parallel to the substrate. The β -NaGdF ₄ nanocrystals fill the gaps between the stacked nanoplates	-	-	238
Spherical Fe ₃ O ₄ (11.0)	NaYF ₄ nanorods (38.5 nm in length and 19.5 nm in diameter)	-	-	Hexane (on DEG)	Air-liquid interface	2D LS ₂ superlattice	LS_2	-	264
	1 J.J IIII III ulainetei j								
Gd ₂ O ₃ nanoplates (23 nm arm length, 7 nm width, and 2 nm thick)	GdF_3 nanoplates (24 nm base, 20 nm height, and 34 nm long axis)	-	-	Hexane (on DEG)	Air-liquid interface	The rhombic nanoplates stand upright between the tripodal ones. Within each 1D string of rhombic and tripodal nanoplates, the nanoplates self- assemble into separate, single- component 1D arrays through shape- specific face-to-face interactions	-	-	237
Gd ₂ O ₃ nanoplates (23 nm arm length, 7 nm width, and 2 nm thick) CdSe/CdS nanorods (15.1 nm in length and 3.8 nm in diameter)	GdF ₃ nanoplates (24 nm base, 20 nm height, and 34 nm long axis) LaF ₃ nanodisks (13.2 nm in diameter and 1.6 nm in thickness)	- Alkyl-functionalized	-	Hexane (on DEG) Hexane (on DEG)	Air-liquid interface Air-liquid interface	The rhombic nanoplates stand upright between the tripodal ones. Within each 1D string of rhombic and tripodal nanoplates, the nanoplates self- assemble into separate, single- component 1D arrays through shape- specific face-to-face interactions LS-type superlattice (<i>C2mm</i> symmetry)	LS	-	237 235
Gd ₂ O ₃ nanoplates (23 nm arm length, 7 nm width, and 2 nm thick) CdSe/CdS nanorods (15.1 nm in length and 3.8 nm in diameter) CdSe/CdS nanorods (15.1 nm in length and 3.8 nm in diameter)	GdF ₃ nanoplates (24 nm base, 20 nm height, and 34 nm long axis) LaF ₃ nanodisks (13.2 nm in diameter and 1.6 nm in thickness) LaF ₃ nanodisks (22.3 nm in diameter and 1.6 nm in thickness)	- Alkyl-functionalized Alkyl-functionalized	-	Hexane (on DEG) Hexane (on DEG) Hexane (on DEG)	Air-liquid interface Air-liquid interface Air-liquid interface	The rhombic nanoplates stand upright between the tripodal ones. Within each 1D string of rhombic and tripodal nanoplates, the nanoplates self- assemble into separate, single- component 1D arrays through shape- specific face-to-face interactions LS-type superlattice (<i>C2mm</i> symmetry) LS ₂ -type superlattice (<i>P4mm</i> symmetry) LS ₆ -type superlattice (<i>P4mm</i> symmetry)	LS LS2 LS6	-	237 235 235
Gd ₂ O ₃ nanoplates (23 nm arm length, 7 nm width, and 2 nm thick) CdSe/CdS nanorods (15.1 nm in length and 3.8 nm in diameter) CdSe/CdS nanorods (15.1 nm in length and 3.8 nm in diameter) Spherical Fe ₃ O ₄ (25)	$GdF_3 \text{ nanoplates } (24$ nm base, 20 nm height, and 34 nm long axis) $LaF_3 \text{ nanodisks}$ (13.2 nm in diameter and 1.6 nm in thickness) $LaF_3 \text{ nanodisks}$ (22.3 nm in diameter and 1.6 nm in thickness) CdSe/CdS octapods (48 nm in length and 12 nm in diameter) (L/D = 4)	- Alkyl-functionalized Alkyl-functionalized Fe ₃ O ₄ : OA Octapods: DDT	- - 0.52 ^(^)	Hexane (on DEG) Hexane (on DEG) Hexane (on DEG) Hexane (on DEG)	Air-liquid interface Air-liquid interface Air-liquid interface Air-liquid interface	The rhombic nanoplates stand upright between the tripodal ones. Within each 1D string of rhombic and tripodal nanoplates, the nanoplates self- assemble into separate, single- component 1D arrays through shape- specific face-to-face interactions LS-type superlattice (C2mm symmetry) LS2-type superlattice (P4mm symmetry) LS6-type superlattice (P4mm symmetry) LS6-type superlattice (P4mm symmetry) LSc-type superlattice (P4mm symmetry)	- LS LS ₂ LS ₆ -	-	237 235 235 270

Cubic CsPbBr ₃ (8.6)	Spherical Fe ₃ O ₄ (19.8)	CsPbBr _{3:} DDAB Fe ₃ O ₄ : OA	0.414	Decane (on glyceryl triacetate)	Air-liquid interface	NaCl-type superlattice AlB ₂ -type superlattice	LS LS ₂	-	240
Spherical Pd (5.8)	Octahedral c-In ₂ O ₃ (15.9 nm in diagonal length)	Pd: DDT $c-In_2O_3$: OA and OAM	-	Toluene	Electrostatic	-	-	-	50
Cubic Au (47)	Cubic Au (from 47 to 85)	DNA	-	water	DNA-guided	NaCl-type superlattice	LS	1:1	289
Cubic Au (52)	Disk-shaped Au (35)	DNA	-	water	DNA-guided	NaCl-type superlattice	LS	1:3	289
Cuboctahedral Au (61 or 95)	Octahedral Au (61 or 95)	Flexible DNA	-	Water	DNA-guided	rch superlattice	-	-	306
Tetrahedral Au (82)	Octahedral Au (82)	Flexible DNA	-	Water	DNA-guided	toh superlattice	-	-	306
Octahedral Au (78)	Bitetrahedral Au (78)	Flexible DNA	-	Water	DNA-guided	gtoh superlattice	-	-	306
Decahedral Au (85)	Octahedral Au (85)	Flexible DNA	-	Water	DNA-guided	P1 quasi-space-filling superlattice	-	-	306
Cubic CsPbBr ₃ (8.6)	Spherical NaGdF ₄ (18.6)	CsPbBr _{3:} DDAB NaGdF ₄ : OA	0.439	Toluene	Emulsion-assisted (Toluene-in-FC-40, Toluene-in-HFE-750 surfactant: 008-FS)	$CaTiO_3$ -type superlattice	LS_4	-	240

Notation: (x) The size refers to that of the core particles; (†) The size ratio (y) is the effective size ratio; (A) sphere diameter to octapod length; DDT, dodecanethiol; OA, oleic acid; TOPO, tri-n-octylphosphine oxide; TCE, tetrachloroethylene;

RT, room temperature; DDAB, didodecyldimethylammonium bromide; DEG, diethylene glycol; OAM, oleylamine; DNA, deoxyribonucleic acid; c-In₂O₃, cubic-phase In₂O₃; *rch*, rectified cubic honeycomb superlattice; *toh*, tetra-octa honeycomb superlattice; *gtoh*, gyrated tetra-octa honeycomb superlattice.

Table 3. Ternary superstructures formed through the co-assembly of nanopartic	les.
---	------

Small particles (S) (size in nm) ^(×)	Large particles (M) (size in nm) ^(×)	Large particles (L) (size in nm) ^(×)	Particle functionalization	Size ratio (γ _{s/м}) ^(†)	Size ratio (γ _{M/L}) ^(†)	Solvent	Co-assembly approach	Superlattice	Stoichiometry	Ref.
Cubic CsPbBr ₃ (8.6)	Truncated cuboidal PbS (11.7)	Spherical Fe ₃ O ₄ (21.5)	CsPbBr _{3:} DDAB PbS: OA Fe ₃ O ₄ : OA	-	-	Toluene	Solvent evaporation (RT)	$CaTiO_3$ -type superlattice	LMS ₃	240
Cubic CsPbBr ₃ (8.6)	Truncated cuboidal PbS (11.7)	Spherical Fe ₃ O ₄ (25.1)	CsPbBr _{3:} DDAB PbS: OA Fe ₃ O ₄ : OA	-	-	Toluene	Solvent evaporation (RT)	$CaTiO_3$ -type superlattice	LMS ₃	240
Spherical CdSe (5.8)	Spherical PbSe (7.9)	Spherical PbSe (12.1)	-	-	-	Toluene	Solvent evaporation (70 °C)	AlB2-type superlattice MgZn2-type superlattice AlMgB4-type superlattice	LS ₂ MS ₂ LMS ₄	160
Cubic CsPbBr ₃ (8.6)	Truncated cubic PbS (10.7)	Spherical Fe ₃ O ₄ (19.8)	CsPbBr ₃ : DDAB PbS and Fe ₃ O ₄ : OA	0.777	0.533	Toluene	Solvent evaporation (RT)	$CaTiO_3$ -type superlattice	$LM_{x}S_{3}S_{1\text{-}x}$	242
Cubic CsPbBr ₃ (8.6)	Truncated cubic PbS (11.7)	Spherical Fe ₃ O ₄ (25.1)	CsPbBr ₃ : DDAB PbS and Fe ₃ O ₄ : OA	0.711	0.46	Toluene	Solvent evaporation (RT)	$CaTiO_3$ -type superlattice	LMS ₃	242
Spherical FePt (5.0)	Spherical Fe ₃ O ₄ (7.0)	Spherical Fe ₃ O ₄ (16.5)	OA and/or OAM	0.77	0.48	Hexane (on DEG)	Air-liquid interface	2D LMS ₂ -type superlattice	LMS ₂	253
CdSe/CdS nanorods (15.1 nm in length and 3.8 nm in diameter)	LaF3 nanodisks (13.2 nm in diameter and 1.6 nm in thickness)	LaF ₃ nanodisks (22.3 nm in diameter and 1.6 nm in thickness)	Alkyl-functionalized	-	-	Hexane (on DEG)	Air-liquid interface	2D LMS-type superlattice	LMS	235

Notation: (x) The size refers to that of the core particles; (†) The size ratio (y) is the effective size ratio; DDAB, didodecyldimethylammonium bromide; OA, oleic acid; RT, room temperature; DEG, diethylene glycol; OAM, oleylamine.

Small particles (S) (size in nm) ^(×)	Large particles (L) (size in nm) ^(x)	Particle functionalization	Size ratio (γ) ^(†)	Solvent	Co-assembly approach	Superlattice	Stoichiometry	n _L :n _S	Ref.
Spherical PMMA (372)	Spherical PMMA (642)	Poly-12-hydroxystearic acid	0.58	Decalin and carbon disulphide	Solvent destabilization	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	LS ₂	1:4-6	233
Spherical PMMA (372)	Spherical PMMA (642)	Poly-12-hydroxystearic acid	0.58	Decalin and carbon disulphide	Solvent destabilization	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	LS ₁₃	1:9-30	233
Spherical NH ₂ -PS (60)	Spherical SO₄-PS (368)	-	0.163	Water pH 4-10	Solvent evaporation	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	-	-	330
Spherical COOH-PS (59.5)	Spherical SO₄-PS (368)	-	0.162	Water pH 4-10	Solvent evaporation	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	-	-	330
Spherical SO ₄ -PS (70.8)	Spherical SO₄-PS (368)	-	0.192	Water pH 4-10	Solvent evaporation	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	-	-	330
Spherical SO ₄ -PS (70.8)	Spherical NH ₂ -PS (497.1)	-	0.142	Water pH 4-10	Solvent evaporation	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	-	-	330
Spherical NH ₂ -PS (152.1)	Spherical SO₄-PS (519.8)	-	0.293	Water pH 4-10	Solvent evaporation	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	-	-	330
Spherical NH ₂ -PS (200)	Spherical SO ₄ -PS (1000)	-	0.2	Water	Solvent evaporation within a confined space (RT, vacuum)	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	-	-	332
Spherical NH ₂ -PS (200)	Spherical SO4-PS (3100)	-	0.065	Water	Solvent evaporation within a confined space (RT, vacuum)	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	-	-	332
Spherical NH ₂ -PS (200)	Spherical COOH-PS (2000)	-	0.1	Water	Solvent evaporation within a confined space (RT, vacuum)	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	-	-	332
Spherical COOH-Si (50)	Spherical NH ₂ -PS (200)	-	0.25	Water	Solvent evaporation within a confined space (RT, vacuum)	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	-	-	332
Spherical NH ₂ -PS (200)	Spherical COOH-Si (2000)	-	0.1	Water	Solvent evaporation within a confined space	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	-	-	333
Spherical NH ₂ -PS (400)	Spherical COOH-PS (2000)	-	0.2	Water	Solvent evaporation within a confined space	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	LS ₈	-	333

Spherical COOH-Si (50)	Spherical NH ₂ -PS (200)	-	0.25	Water	Solvent evaporation within a confined space	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	Deviation of LS_8	-	333
Spherical NH ₂ -PS (110)	Spherical NH ₂ -PS (200)	-	0.55	Water	Solvent evaporation within a confined space	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	LS_2	-	333
Spherical NH ₂ -PS (110)	Spherical SO₄-PS (1000)	-	0.11	Water	Solvent evaporation within a confined space	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	-	-	333
Spherical COOH-Si (50)	Spherical SO ₄ -PS (500)	-	0.05	Water	Solvent evaporation within a confined space	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	-	-	333
Spherical silica (220)	Spherical silica (406)	-	0.54	-	Solvent evaporation	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	LS_2 LS_4	-	337
Spherical PS (194)	Spherical silica (406)	-	0.48	-	Solvent evaporation	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	LS ₂ LS ₃	-	337
Spherical NH ₂ -PS (200)	Spherical SO4-PS (3100)	-	0.065	Water	Solvent evaporation within a confined space	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	-	-	352
Spherical NH ₂ -PS (110)	Plain-Si (1000)	-	0.11	Water	Solvent evaporation within a confined space	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	-	-	352
Plain-Si (150)	Plain-Si (1000)	-	0.15	Water	Solvent evaporation within a confined space	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	LS ₈	-	352
Plain-Si (500)	Plain-Si (2000)	-	0.25	Water	Solvent evaporation within a confined space	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	LS ₈	-	352
Plain-Si (722)	Plain-Si (2000)	-	0.36	Water	Solvent evaporation within a confined space	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	LS_4	-	352
Plain-Si (800)	Plain-Si (2000)	-	0.40	Water	Solvent evaporation within a confined space	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	LS _{3.33}	-	352
Plain-Si (500)	Plain-Si (1000)	-	0.50	Water	Solvent evaporation within a confined space	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	LS ₂ LS ₃	-	352
Plain-Si (350)	Plain-Si (500)	-	0.70	Water	Solvent evaporation within a confined space	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	LS	-	352

Plain-PS (722)	Plain-Si (1000)	-	0.72	Water	Solvent evaporation within a confined space	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	LS	-	352
Plain-Si (1700)	Plain-Si (2000)	-	0.85	Water	Solvent evaporation within a confined space	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	LS	-	352
Spherical NH ₂ -PS (200)	Spherical SO ₄ -PS (3100)	-	0.065	Water	Solvent evaporation within a confined space	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	-	-	353
Spherical NH ₂ -PS (200)	Spherical COOH-PS (2000)	-	0.1	Water	Solvent evaporation within a confined space	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	-	-	353
Spherical COOH-Si (50)	Plain-PS (350)	-	0.14	Water	Solvent evaporation within a confined space	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	-	-	353
Spherical NH ₂ -PS (400)	Spherical COOH-PS (2000)	-	0.2	Water	Solvent evaporation within a confined space	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	LS_8	-	353
Spherical COOH-Si (50)	Spherical NH ₂ -PS (200)	-	0.25	Water	Solvent evaporation within a confined space	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	Deviation of LS_8	-	353
Spherical COOH-Si (50)	Plain-PS (150)	-	0.333	Water	Solvent evaporation within a confined space	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	LS_2	-	353
Spherical SO ₄ -PS (110)	Spherical NH ₂ -PS (200)	-	0.55	Water	Solvent evaporation within a confined space	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	LS_2	-	353
Spherical COOH-Si (2000)	Spherical SO ₄ -PS (3100)	-	0.64	Water	Solvent evaporation within a confined space	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	LS_2 Deviation of LS_2	-	353
Spherical PS (200)	Spherical PS (2000)	-	0.1	Water and ethanol (on water)	Air-liquid interface	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	LS ₂₀ LS ₂₆	-	354
Spherical PS (350)	Spherical PS (2000)	-	0.175	Water and ethanol (on water)	Air-liquid interface	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	LS ₆ LS ₉ LS ₁₂ LS ₁₇	-	354
Spherical PS (500)	Spherical PS (2000)	-	0.25	Water and ethanol (on water)	Air-liquid interface	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	LS ₆	-	354

Spherical PS	Spherical PS	-	0.147	Water and ethanol (on water)	Air-liquid interface	2D superlattice: large particles form a hexagonal pattern, with small particles	LS_2	2	360
(130)	(887)					occupying the spaces			
						2D superlattice: large particles form a			
Spherical PS	Spherical PS	-	0.147	Water and ethanol (on water)	Air-liquid interface	hexagonal pattern, with small particles	LS_6	4	360
(130)	(887)					occupying the spaces			
						2D superlattice: large particles form a			
Spherical PS	Spherical PS	-	0.195	Water and ethanol (on water)	Air-liquid interface	hexagonal pattern, with small particles	LS_2	2	360
(1/3)	(887)					occupying the spaces			
						2D superlattice: large particles form a			
Spherical PS	Spherical PS	-	0.195	Water and ethanol (on water)	Air-liquid interface	hexagonal pattern, with small particles	LS_6	4	360
(1/3)	(887)					occupying the spaces			
						2D superlattice: large particles form a			
Spherical PS	Spherical PS	-	0.194	Water and ethanol (on water)	Air-liquid interface	hexagonal pattern, with small particles	LS_2	2	360
(130)	(669)					occupying the spaces			
						2D superlattice: large particles form a			
Spherical PS	Spherical PS		0.194	Water and ethanol (on water)	Air-liquid interface	hexagonal pattern, with small particles	LS_6	4	360
(130)	(669)					occupying the spaces			
					Air-liquid interface	2D superlattice: large particles form a			
Spherical PS	Spherical PS	Carboxylic acid surface	0.19	Water and ethanol (on water)	(Langmuir-Blodgett	hexagonal pattern, with small particles	LS_2	2	329
(202)	(1063)	functionalization			technique)	occupying the spaces			
					Air-liquid interface	2D superlattice: large particles form a			
Spherical PS	Spherical PS	Carboxylic acid surface	0.19	Water and ethanol (on water)	(Langmuir-Blodgett	hexagonal pattern, with small particles	LS_6	6	329
(202)	(1063)	functionalization			technique)	occupying the spaces			
					Air-liquid interface	2D superlattice: large particles form a			
Spherical PS	Spherical PS	Carboxylic acid surface	0.19	Water and ethanol (on water)	(Langmuir-Blodgett	hexagonal pattern, with small particles	LS_9	9	329
(202)	(1063)	runctionalization			technique)	occupying the spaces			
					Air-liquid interface	2D superlattice: large particles form a			
Spherical PS	Spherical PS	Carboxylic acid surface	0.21	Water and ethanol (on water)	(Langmuir-Blodgett	hexagonal pattern, with small particles	LS_2	2	329
(225)	(1063)	runctionalization			technique)	occupying the spaces			
					Air-liquid interface	2D superlattice: large particles form a			
Spherical PS	Spherical PS	Carboxylic acid surface	0.21	Water and ethanol (on water)	(Langmuir-Blodgett	hexagonal pattern, with small particles	LS_6	6	329
(225)	(1063)	runctionalization			technique)	occupying the spaces			
					Air-liquid interface	2D superlattice: large particles form a			
Spherical PS	Spherical PS	Carboxylic acid surface	0.21	Water and ethanol (on water)	(Langmuir-Blodgett	hexagonal pattern, with small particles	LS ₉	9	329
(225)	(1063)	runctionalization			technique)	occupying the spaces			
		Corbourdia agid qurfa ag			Air-liquid interface	2D superlattice: large particles form a			
Spherical PS	Spherical PS	functionalization	0.29	Water and ethanol (on water)	(Langmuir-Blodgett	hexagonal pattern, with small particles	LS_2	2	329
ເວບວງ	(1005)	Tunctionalization			technique)	occupying the spaces			
0.1 . 100	0.1 . 100	Carbourlie acid aurfag-			Air-liquid interface	2D superlattice: large particles form a			
Spherical PS	Spherical PS	functionalization	0.29	Water and ethanol (on water)	(Langmuir-Blodgett	hexagonal pattern, with small particles	LS ₆	6	329
ເວບວງ	(1005)	Tunctionalization		-	technique)	occupying the spaces			

Spherical PS (336)	Spherical PS (1063)	Carboxylic acid surface functionalization	0.32	Water and ethanol (on water)	Air-liquid interface (Langmuir-Blodgett technique)	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	LS_2	2	329
Spherical PMMA (1980)	Spherical PMMA (2160)		0.92	CHB and cis-decalin	Electrostatic (TBAB to adjust particle charges)	CsCl-type superlattice	LS	1:1	196
Spherical silica (1040)	Spherical PMMA (1160)	-	0.9	CHB and cis-decalin	Electrostatic (TBAB to adjust particle charges)	CsCl-type superlattice	LS	-	196
Spherical PMMA (720)	Spherical PMMA (2320)	-	0.31	CHB and cis-decalin	Electrostatic (TBAB to adjust particle charges)	<i>bcc</i> -LS ₆ -type superlattice	LS_6	1:8	196
Spherical PMMA (720)	Spherical PMMA (2320)	-	0.31	CHB and cis-decalin	Electrostatic (TBAB to adjust particle charges)	NaCl-type superlattice NiCl-type superlattice	LS LS	1:8	196
Spherical PMMA (720)	Spherical PMMA (777)	-	0.93 ± 0.01	CHPB and CD	Electrostatic	CsCl-type superlattice NaCl-type superlattice	LS LS	-	367
Spherical TPM (1000)	Spherical TPM (1000)	Flexible DNA	1	Water	DNA-guided	CsCl-type superlattice	LS	-	257
Spherical TPM (540)	Spherical TPM (1000)	Flexible DNA	0.54	Water	DNA-guided	AlB ₂ -type superlattice	LS ₂	-	257
Spherical TPM (540)	Spherical TPM (1500)	Flexible DNA	0.36	Water	DNA-guided	<i>bcc</i> -LS ₆ -type superlattice	LS_6	-	257
Spherical silica (222)	Spherical silica (442)	-	0.5	Ethanol and ethylene glycol	Spin-coating (3,000 rpm)	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	LS ₂	-	374
Spherical silica (222)	Spherical silica (442)	-	0.5	Ethanol and ethylene glycol	Spin-coating (10,000 rpm)	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	LS ₃	-	374
Spherical silica (442)	Spherical silica (891)	-	0.5	Ethanol and ethylene glycol	Spin-coating (3,000 rpm)	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	LS_2	-	374
Spherical silica (519)	Spherical silica (891)	-	0.58	Ethanol and ethylene glycol	Spin-coating (3,000 rpm)	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	LS ₂ LS ₃	-	374
Spherical silica (222)	Spherical silica (891)	-	0.25	Ethanol and ethylene glycol	Spin-coating (3,000 rpm)	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	LS ₂	-	374

Spherical PS (400)	Spherical PS (1800)	-	0.22	Water	Electric field-assisted (Glass substrate coated with ITO)	Large particles self-assembled into hexagonally close-packed monolayers. Each interstitial site accommodated four small particles arranged in an inverse pyramid, with each large particle surrounded by 24 small ones	LS ₈	-	376
Spherical PS (150)	Spherical PS (700)	-	0.2	Water	Electric field-assisted (Glass substrate coated with ITO)	Large particles self-assembled into hexagonally close-packed monolayers. Each interstitial site accommodated four small particles arranged in an inverse pyramid, with each large particle surrounded by 24 small ones.	LS ₈	-	376
Spherical PS (400)	Spherical PS (700)	-	0.57	Water	Electric field-assisted (Glass substrate coated with ITO)	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	LS_2	-	376
Spherical PS (640)	Spherical PS (700)	-	0.91	Water	Electric field-assisted (Glass substrate coated with ITO)	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	LS	-	376
Spherical PS (240)	Spherical PS (700)	-	0.34	Water	Electric field-assisted (Glass substrate coated with ITO)	LS ₂ or LS ₄ depending on the number of small particles deposited onto the monolayer of large particles	LS_2 LS_4	-	376
Spherical silica (410)	Spherical silica (1370)	-	0.3	Glycerol and water	Electric field-assisted	NaCl-type superlattices	LS	-	377
Spherical PS (100)	Filamentous fd virus (6.6 nm diameter, 880 nm contour length, 2.2 µm persistence length)	-	-	Water	Solvent destabilization	"Columnar" phase (at low concentration of spheres) " Lamellar" phase (at high concentration of spheres)	-	-	347
Cubic ZIF-8 (135 nm in length)	Spherical PS (600)	Pluronic F127	-	Water	Solvent evaporation (40 °)	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	LS_2	-	349
Cubic ZIF-8 (196 nm in length)	Spherical PS (600)	Pluronic F127	-	Water	Solvent evaporation (40 °)	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	LS_2	-	349
Cubic ZIF-8 (196 nm in length)	TRD ZIF-8 (414 nm in length, with a truncation of 0.68)	Cubic ZIF-8: Pluronic F127 TRD ZIF-8: Pluronic F127- COOH	-	Water	Solvent evaporation (40 °)	NaCl-type superlattices	LS	-	349

Spherical NaYF ₄ (32)	Spherical MOF-801 (100)	Oleyl phosphate	0.32	Cyclohexane (on DEG)	Air-liquid interface	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	LS ₂	350
Spherical Fe ₂ O ₄	Spherical MOF-801					2D superlattice: large particles form a		
(21)	(40)	Oleyl phosphate	0.53	Cyclohexane (on DEG)	Air-liquid interface	hexagonal pattern, with small particles	LS	350
						occupying the spaces		
Truncated octahedral MOF-801 (40 in length)	Spherical MOF-801 (120)			Cyclohexane (on DEG)	Air-liquid interface	2D superlattice: large particles form a		
		Oleyl phosphate	0.33			hexagonal pattern, with small particles	LS_2	350
						occupying the spaces		
Octahedral						2D superlattice: large particles form a		
UiO-66-NH ₂ (35 in length)	Spherical MOF-801 (120)	Oleyl phosphate	0.30	Cyclohexane (on DEG)	Air-liquid interface	hexagonal pattern, with small particles	LS_2	350
						occupying the spaces		

Table 4. Binary superstructures formed through the co-assembly of spherical and anisotropic submicrometer-sized particles (continuation).

Notation: (κ) The size refers to that of the core particles; (†) The size ratio (γ) is the effective size ratio; PMMA, polymethylmethacrylate; PS, polystyrene; RT, room temperature; CHB, cyclohexyl bromide; CHPB, cycloheptyl bromide; CD, cis-decalin; DNA, deoxyribonucleic acid; TPM, 3-(trimethoxysilyl) propyl methacrylate; ITO, indium tin oxide; TRD, truncated rhombic dodecahedral.

Small particles (S) (size in nm) ^(x)	Large particles (M) (size in nm) ^(x)	Large particles (L) (size in nm) ^(×)	Large particles (XL) (size in nm) ^(×)	Particle functionalization	Size ratio (γ _{S/M}) ^(†)	Size ratio (γ _{M/L}) ^(†)	Size ratio (γ _{M/XL}) ^(†)	Solvent	Co-assembly approach	Superlattice	Stoichiometry	Ref.
Spherical silica (6)	Spherical PMMA (84)	Spherical PS (465)	-	-	0.071	0.18	-	Water	Solvent destabilization	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	-	351
Spherical COOH-Si (50)	Spherical NH ₂ -PS (200)	Spherical COOH-PS (2000)	-	-	0.25	0.1	-	Water	Solvent evaporation within a confined space	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	-	353
Spherical COOH-Si (50)	Spherical NH ₂ -PS (200)	Spherical SO ₄ -PS (3100)	-	-	0.25	0.065	-	Water	Solvent evaporation within a confined space	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	-	353
Spherical COOH-Si (50)	Spherical NH ₂ -PS (200)	Spherical SO ₄ -PS (1000)	-	-	0.25	0.2	-	Water	Solvent evaporation within a confined space	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	-	353
Spherical COOH-Si (25)	Plain-PS (722)	Plain-Si (5000)	-	-	0.035	0.144	-	Water	Solvent evaporation within a confined space	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	-	353
Spherical COOH-Si (50)	Spherical NH ₂ -PS (200)	Plain-Si (1000)	Plain-Si (5000)	-	0.25	0.2	0.2	Water	Solvent evaporation within a confined space	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	-	353
Spherical COOH-Si (25)	Spherical NH ₂ -PS (200)	Plain-Si (1000)	Plain-Si (5000)	-	0.125	0.2	0.2	Water	Solvent evaporation within a confined space	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	-	353
Plain-Si (150)	Plain-Si (1000)	Plain-Si (2000)	-	-	0.15	0.5	-	Water	Solvent evaporation within a confined space	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	-	352
Plain-Si (150)	Plain-Si (500)	Plain-Si (1000)	-	-	0.30	0.5	-	Water	Solvent evaporation within a confined space	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	-	352
Plain-PS (800)	Plain-Si (500)	Plain-Si (1000)	-	-	0.63	0.5	-	Water	Solvent evaporation within a confined space	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	LMS ₃	352
Plain-Si (1700)	Plain-Si (1000)	Plain-Si (2000)	-	-	0.59	0.5	-	Water	Solvent evaporation within a confined space	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	LMS_4	352
Plain-Si (500)	Plain-Si (1000)	Plain-Si (2000)	-	-	0.5	0.5	-	Water	Solvent evaporation within a confined space	2D superlattice: large particles form a hexagonal pattern, with small particles occupying the spaces	$LM_2S_7 \\ LM_2S_{10} \\ LM_2S_{11}$	352
Spherical PS (150)	Spherical PS (240)	Spherical PS (700)	-	-	0.625	0.34	-	Water	Electric field-assisted (Glass substrate coated with ITO)	Five 150 nm PS particles filled each secondary interstitial site between two 240 nm PS particles, with one particle positioned in the middle and four others forming a layer above it	LM ₂ S ₁₅	376

Table 5. Ternary and quaternary superstructures formed through the co-assembly of submicrometer-sized particles.

Notation: (κ) The size refers to that of the core particles; (†) The size ratio (γ) is the effective size ratio; PMMA, polymethylmethacrylate; PS, polystyrene; ITO, indium tin oxide.

References**

** The number of references in the Supporting Information matches those in the main manuscript.

[24] C. J. Kiely, J. Fink, M. Brust, D. Bethell, D. J. Schiffrin, Nature 396 (1998) 444-446. https://doi.org/10.1038/24726.

[29] E. V. Shevchenko, D. V. Talapin, S. O'Brien, C. B. Murray, J. Am. Chem. Soc. 127 (2005) 8741-8747. https://doi.org/10.1021/ja050980i.

[31] E. V. Shevchenko, D. V. Talapin, N. A. Kotov, S. O'Brien, C. B. Murray, Nature 439 (2006)55-59. https://doi.org/10.1038/nature04414.

[32] E. V. Shevchenko, D. V. Talapin, C. B. Murray, S. O'Brien, J. Am. Chem. Soc. 128 (2006)3620-3637. https://doi.org/10.1021/ja0564261.

[33] D. V. Talapin, E. V. Shevchenko, M. I. Bodnarchuk, X. Ye, J. Chen, C. B. Murray, Nature 461 (2009) 964-967. https://doi.org/10.1038/nature08439.

[37] Z. Chen, J. Moore, G. Radtke, H. Sirringhaus, S. O'Brien, J. Am. Chem. Soc. 129 (2007) 15702-15709. https://doi.org/10.1021/ja0756239.

[38] Z. Chen, S. O'Brien, ACS Nano 2 (2008) 1219-1229. https://doi.org/10.1021/nn800187v.

[41] M. I. Bodnarchuk, M. V. Kovalenko, W. Heiss, D. V. Talapin, J. Am. Chem. Soc. 132 (2010)11967-11977. https://doi.org/10.1021/ja103083q.

[49] A. M. Kalsin, M. Fialkowski, M. Paszewski, S. K. Smoukov, K. J. M. Bishop, B. A. Grzybowski, Science 312 (2006) 420-424. https://doi.org/10.1126/science.1125124.

[50] Z. Sun, Z. Luo, J. Fang, ACS Nano 4 (2010) 1821-1828.https://doi.org/10.1021/nn100302v.

[149] M. I. Bodnarchuk, L. Li, A. Fok, S. Nachtergaele, R. F. Ismagilov, D. V. Talapin, J. Am.Chem. Soc. 133 (2011) 8956-8960. https://doi.org/10.1021/ja201129n.

[160] W. H. Evers, H. Friedrich, L. Filion, M. Dijkstra, D. Vanmaekelbergh, Angew. Chem. Int.Ed. 48 (2009) 9655-9657. https://doi.org/10.1002/anie.200904821.

[181] D. K. Smith, B. Goodfellow, D. M. Smilgies, B. A. Korgel, J. Am. Chem. Soc. 131 (2009)3281-3290. https://doi.org/10.1021/ja8085438.

[184] F. X. Redl, K. S. Cho, C. B. Murray, S. O'Brien, Nature 423 (2003) 968-971. https://doi.org/10.1038/nature01702.

[190] A. E. Saunders, B. A. Korgel, ChemPhysChem 6 (2005) 61-65. https://doi.org/10.1002/cphc.200400382. [194] X. Ye, J. Chen, C. B. Murray, J. Am. Chem. Soc. 133 (2011) 2613-2620. https://doi.org/10.1021/ja108708v.

[196] M. E. Leunissen, C. G. Christova, A.-P. Hynninen, C. P. Royall, A. I. Campbell, A. Imhof,
M. Dijkstra, R. van Roij, A. van Blaaderen, Nature 437 (2005) 235-240.
https://doi.org/10.1038/nature03946.

[206] M. I. Bodnarchuk, R. Erni, F. Krumeich, M. V. Kovalenko, Nano Lett. 13 (2013) 1699-1705. https://doi.org/10.1021/nl4002475.

[208] Z. Yang, J. Wei, P. Bonville, M.-P. Pileni, J. Am. Chem. Soc. 137 (2015) 4487-4493. https://doi.org/10.1021/jacs.5b00332.

[211] K. Overgaag, W. Evers, B. de Nijs, R. Koole, J. Meeldijk, D. Vanmaekelbergh, J. Am. Chem. Soc. 130 (2008) 7833-7835. https://doi.org/10.1021/ja802932m.

[214] M. A. Boles, D. V. Talapin, J. Am. Chem. Soc. 137 (2015) 4494-4502. https://doi.org/10.1021/jacs.5b00839.

[217] J. Wei, N. Schaeffer, M.-P. Pileni, J. Am. Chem. Soc. 137 (2015) 14773-14784. https://doi.org/10.1021/jacs.5b09959.

[221] I. Coropceanu, M. A. Boles, D. V. Talapin, J. Am. Chem. Soc. 141 (2019) 5728-5740. https://doi.org/10.1021/jacs.8b12539.

[233] P. Bartlett, R. H. Ottewill, P. N. Pusey, Phys. Rev. Lett. 68 (1992) 3801-3804.https://doi.org/10.1103/PhysRevLett.68.3801.

[234] I. Cherniukh, G. Rainò, T. V. Sekh, C. Zhu, Y. Shynkarenko, R. A. John, E. Kobiyama, R. F. Mahrt, T. Stöferle, R. Erni, M. V. Kovalenko, M. I. Bodnarchuk, ACS Nano 15 (2021) 16488-16500. https://doi.org/10.1021/acsnano.1c06047.

[235] T. Paik, B. T. Diroll, C. R. Kagan, C. B. Murray, J. Am. Chem. Soc. 137 (2015) 6662-6669. https://doi.org/10.1021/jacs.5b03234.

[237] T. Paik, C. B. Murray, Nano Lett. 13 (2013) 2952-2956. https://doi.org/10.1021/nl401370n.

[238] T. Paik, D.-K. Ko, T. R. Gordon, V. Doan-Nguyen, C. B. Murray, ACS Nano 5 (2011) 8322-8330. https://doi.org/10.1021/nn203049t.

[240] I. Cherniukh, T. V. Sekh, G. Rainò, O. J. Ashton, M. Burian, A. Travesset, M. Athanasiou,
A. Manoli, R. A. John, M. Svyrydenko, V. Morad, Y. Shynkarenko, F. Montanarella, D.
Naumenko, H. Amenitsch, G. Itskos, R. F. Mahrt, T. Stöferle, R. Erni, M. V. Kovalenko, M. I.
Bodnarchuk, ACS Nano 16 (2022) 7210-7232 https://doi.org/10.1021/acsnano.1c10702.

[241] E. V. Shevchenko, J. B. Kortright, D. V. Talapin, S. Aloni, A. P. Alivisatos, Adv. Mater. 19(2007) 4183-4187. https://doi.org/10.1002/adma.200701470.

[242] I. Cherniukh, G. Rainò, T. Stöferle, M. Burian, A. Travesset, D. Naumenko, H. Amenitsch,
R. Erni, R. F. Mahrt, M. I. Bodnarchuk, M. V. Kovalenko, Nature 593 (2021) 535-542.
https://doi.org/10.1038/s41586-021-03492-5.

[248] A. Dong, J. Chen, P. M. Vora, J. M. Kikkawa, C. B. Murray, Nature 466 (2010) 474-477. https://doi.org/10.1038/nature09188.

[250] T. Kister, M. Mravlak, T. Schilling, T. Kraus, Nanoscale 8 (2016) 13377-13384.https://doi.org/10.1039/C6NR01940D.

[253] A. Dong, X. Ye, J. Chen, C. B. Murray, Nano Lett. 11 (2011) 1804-1809. https://doi.org/10.1021/nl200468p.

[254] X. Ye, C. Zhu, P. Ercius, S. N. Raja, B. He, M. R. Jones, M. R. Hauwiller, Y. Liu, T. Xu, A. P. Alivisatos, Nat. Commun. 6 (2015) 10052. https://doi.org/10.1038/ncomms10052.

[256] R. J. Macfarlane, B. Lee, M. R. Jones, N. Harris, G. C. Schatz, C. A. Mirkin, Science 334(2011) 204-208. https://doi.org/10.1126/science.1210493.

[257] Y. Wang, Y. Wang, X. Zheng, É. Ducrot, J. S. Yodh, M. Weck, D. J. Pine, Nat. Commun. 6 (2015) 7253. https://doi.org/10.1038/ncomms8253.

[264] X. Ye, J. A. Millan, M. Engel, J. Chen, B. T. Diroll, S. C. Glotzer, C. B. Murray, Nano Lett. 13(2013) 4980-4988. https://doi.org/10.1021/nl403149u.

[270] A. Castelli, J. de Graaf, M. Prato, L. Manna, M. P. Arciniegas, ACS Nano 10 (2016) 4345-4353. https://doi.org/10.1021/acsnano.5b08018.

[278] D. Nykypanchuk, M. M. Maye, D. Van Der Lelie, O. Gang, Nature 451 (2008) 549-552. https://doi.org/10.1038/nature06560.

[289] M. N. O'Brien, M. R. Jones, B. Lee, C. A. Mirkin, Nat. Mater. 14 (2015) 833-839. https://doi.org/10.1038/nmat4293.

[306] W. Zhou, Y. Li, K. Je, T. Vo, H. Lin, B. E. Partridge, Z. Huang, S. C. Glotzer, C. A. Mirkin, Science 383 (2024) 312-319. https://doi.org/10.1126/science.adj1021.

[308] Y. Wang, J. Chen, C. Zhu, B. Zhu, S. Jeong, Y. Yi, Y. Liu, J. Fiadorwu, P. He, X. Ye, Nano Lett. 21 (2021) 5053-5059. https://doi.org/10.1021/acs.nanolett.1c00890.

[315] P.-p. Wang, Q. Qiao, Y. Zhu, M. Ouyang, J. Am. Chem. Soc. 140 (2018) 9095-9098. https://doi.org/10.1021/jacs.8b05643.

[316] A. Travesset, Proc. Natl. Acad. Sci. 112 (2015) 9563-9567. https://doi.org/10.1073/pnas.1504677112.

[329] N. Vogel, L. de Viguerie, U. Jonas, C. K. Weiss, K. Landfester, Adv. Funct. Mater. 21(2011) 3064-3073. https://doi.org/10.1002/adfm.201100414.

[330] R. Mukhopadhyay, O. Al-Hanbali, S. Pillai, A. G. Hemmersam, R. L. Meyer, A. C. Hunter, K. J. Rutt, F. Besenbacher, S. M. Moghimi, P. Kingshott, J. Am. Chem. Soc. 129 (2007) 13390-13391. https://doi.org/10.1021/ja075988c. [332] G. Singh, S. Pillai, A. Arpanaei, P. Kingshott, Adv. Mater. 23 (2011) 1519-1523. https://doi.org/10.1002/adma.201004657.

[333] G. Singh, H. J. Griesser, K. Bremmell, P. Kingshott, Adv. Funct. Mater. 21 (2011) 540-546. https://doi.org/10.1002/adfm.201001340.

[337] K. P. Velikov, C. G. Christova, R. P. A. Dullens, A. van Blaaderen, Science 296 (2002) 106-109. https://doi.org/10.1126/science.1067141.

[347] M. Adams, Z. Dogic, S. L. Keller, S. Fraden, Nature 393 (1998) 349-352. https://doi.org/10.1038/30700.

[349] L. Meng, J. Fonseca, R. Sánchez-Naya, A. M. Ghadiri, I. Imaz, D. Maspoch, J. Am. Chem. Soc. 146 (2024) 21225-21230. https://doi.org/10.1021/jacs.4c07194.

[350] X. Wu, Y. Gao, H. Wang, Z. Zhang, X. Xi, D. Yang, T. Li, A. Dong, J. Am. Chem. Soc. 147 (2025) 6361-6366. https://doi.org/10.1021/jacs.4c17724.

[351] J. Wang, Q. Li, W. Knoll, U. Jonas, J. Am. Chem. Soc. 128 (2006) 15606-15607. https://doi.org/10.1021/ja067221a.

[352] G. Singh, S. Pillai, A. Arpanaei, P. Kingshott, Adv. Funct. Mater. 21 (2011) 2556-2563. https://doi.org/10.1002/adfm.201002716.

[353] G. Singh, S. Pillai, A. Arpanaei, P. Kingshott, Soft Matter 7 (2011) 3290-3294. https://doi.org/10.1039/C0SM01360A.

[354] Z. Dai, Y. Li, G. Duan, L. Jia, W. Cai, ACS Nano 6 (2012) 6706-6716. https://doi.org/10.1021/nn3013178.

[360] J. Yu, Q. Yan, D. Shen, ACS Appl. Mater. Interfaces 2 (2010) 1922-1926. https://doi.org/10.1021/am100250c.

[367] P. Bartlett, A. I. Campbell, Phys. Rev. Lett. 95 (2005) 128302. https://doi.org/10.1103/PhysRevLett.95.128302.

[374] D. Wang, H. Möhwald, Adv. Mater. 16 (2004) 244-247. https://doi.org/10.1002/adma.200305565.

[376] X. Huang, J. Zhou, M. Fu, B. Li, Y. Wang, Q. Zhao, Z. Yang, Q. Xie, L. Li, Langmuir 23 (2007) 8695-8698. https://doi.org/10.1021/la700512j.

[377] E. C. M. Vermolen, A. Kuijk, L. C. Filion, M. Hermes, J. H. J. Thijssen, M. Dijkstra, A. van Blaaderen, Proc. Natl. Acad. Sci. 106 (2009) 16063-16067.
https://doi.org/10.1073/pnas.0900605106.

[406] E. V. Shevchenko, D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase, H. Weller, J. Am. Chem. Soc. 124 (2002) 11480-11485. https://doi.org/10.1021/ja025976l.