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ADDITIONAL SIMULATION METHODS

We perform Molecular Dynamics simulations of polymer networks composed of monomers that interact through the
Kremer-Grest potential. The excluded volume for all particles is described by the Weeks–Chandler–Andersen (WCA)
potential [1]:
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where σ is the monomer diameter, which sets the unit of length, and ϵ controls the energy scale. Defining m as the
mass of the particles, the unit time of our simulations is defined as τ =

√
mσ2/ϵ. Chemical bonds between connected

monomers are modeled by a FENE potential VFENE (r) [2]:
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where kF = 15 is the spring constant and R0 = 1.5 is the maximum extension of the bond. To simulate the presence
of the solvent and the polymer progressively going from a hydrophilic to a hydrophobic condition with increasing
temperature, we employ a so-called solvophobic potential [3] of the form:
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where γ = (π(2.25 − 21/3)−1), β = 2π − 2.25γ, ϵ is the unit of energy and the parameter α controls the strength of
the monomer-monomer attractive interactions.

As anticipated in the main text, we employ networks with two different topologies. In one case, we build networks
with an ordered structure based on a diamond-like lattice by crosslinking equal length chains where monomers are
placed at the equilibrium distance of the FENE potential. The crosslinkers concentration is therefore directly de-
termined by the chain length l through the relationship: c = 1/(2l + 1). The total number of monomers N of the
networks is N = Nc

c where Nc is the number of crosslinkers. We employ systems as in Table S1.

c l Nc N
0.5 99 64 12736
1 49 64 6336
2 25 64 3264
3 16 216 7128
5 10 216 4536
7.5 6 512 6656

TABLE S1. Table with crosslinker concentration, strand length, number of crosslinks, and total number of monomers for the
ordered systems.
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In the disordered case, we considered a network with N = 4384 total number of monomers, of which Nc = 49
crosslinkers. This system is assembled through a recently developed technique [4, 5], which makes us able to produce
low density computational polymer networks. In this method, one introduces patchy particles into a box with periodic
boundary conditions; these particles are repulsive, each featuring either two or four attractive patches arranged
tetrahedrally or positioned at the poles to represent crosslinkers and monomers, respectively indicated in the following
as A and B patches. The interaction potential between particles i and j is defined as follows:

V (rij ,pi,pj) = VWCA(rij) +
∑
µ∈pi

∑
ν∈pj

Vpatchy(rµν) (S4)

where the first addend indicates the presence of a WCA repulsion as introduced in Eq. S1 while the second addend
is a sum over patches (µ, ν) belonging to the two particles whose positions are identified by a unit vector pµ

i ,p
ν
j . The

Vpatchy potential reads:
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)
if rµν ≤ rc (S5)

where σp = 0.4 indicates the position of an attractive well of depth ϵµν and rc = 1.5σp is chosen by imposing
Vpatchy(rc) = 0. We also set ϵAB = ϵBB = ϵ and ϵAA = 0, so that we only allow bonding between the BB and AB
patches. Additionally, we incorporate a three-body potential that acts on triplets of nearby patches, following the
method in Ref. [6]. This approach enables an efficient bond-swapping mechanism that rapidly equilibrates the system
at very low temperatures while maintaining the single-bond-per-patch constraint.

The assembly is performed via NVT molecular dynamics simulations at low temperature T = 0.3 and density
ρ = 2.85 × 10−2 with the OxDNA package [7, 8]. We wait until the 99.9% of possible bonds are satisfied, then we
remove all particles that do not belong to the largest cluster and all dangling chains in order to have a fully connected
network without defects. This choice allows us to gain better control over the network’s properties, as we observed
in studies of both phantom and fully volume-excluded disordered systems (see Refs. [5, 9]). Dangling chains indeed
tend to distort the system’s statistical properties, as they typically do not contribute to elasticity. Once the assembly
is ready, we then substitute the patchy reversible bonds with the bead-spring model.

BULK AND YOUNG MODULI
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FIG. S1. Bulk (a) and Young (b) moduli as a function of α for c = 1, 2, 3, 5, 7.5% and corresponding P = 9.25 × 10−4, 3.5 ×
10−3, 7.9× 10−3, 1.8× 10−2, 4.25× 10−2.

As discussed in the main text, the behavior of the bulk K modulus for our hydrogels suggests the presence of an
underlying criticality. In particular, a vanishing bulk modulus is related with the presence of critical-like fluctuations
of the system volume, hinting at the occurrence of a second order transition as observed for instance in martensitic
transformations [10]. In Fig. S1(a) we report the bulk modulus as a function of α for different c values, corresponding
to the state points shown in Fig.3(a) of the main text. At low α, the elasticity of the network is strongly influenced by
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c, with K spanning up to two orders of magnitude as c increases. However, increasing α, K shows a dramatic decrease
with a minimum reaching very low values as c decreases, up to about five orders of magnitude with respect to the high
compact state observed at large α when all networks behave in the same way. We report the corresponding behavior
of the Young modulus Y in Fig. S1(b). Although Y is not expected to show critical behavior, we observe the same
qualitative trend also present in K, with a clear minimum also developing, becoming more and more pronounced as
c decreases. Beyond the VPT, Y increases with α, but unlike K, it remains clearly separated for different values of c.

DISORDERED EQUATION OF STATE
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FIG. S2. Pressure versus density of the c = 1% disordered system for different values of α

The equation of state for the disordered system at various values of α is reported in Fig. S2 for the sake of
completeness. As can be observed, the results are largely consistent with those of the ordered system, though the
transition occurs at a slightly lower α than in the ordered case. This earlier transition in the disordered system was
also noted in Ref. [11], although in that study the driving parameter for the transition, which decreased in absolute
value, was the pressure. This behavior can be attributed to density inhomogeneities, which make the disordered
structure more easily stretched.

SIZE EFFECTS

To address the relevance of size scaling, we conducted additional simulations for a larger system at c = 1%. The
results are presented in Fig. S3. The left panel shows the swelling curve of the diamond network at c = 1% for
two different system sizes, as specified in the legend. The two curves, when appropriately rescaled by the volume at
α = 0, perfectly align, demonstrating consistency between scales. However, due to computational limitations, the
larger system was analyzed at fewer state points.

Building on this result, we further explored the properties of the larger system near the transition, both in equilib-
rium and under uniaxial deformation. In particular, we observed the same critical fluctuations discussed in the main
manuscript for the smaller system, as depicted in the right panel of Fig. S3. Moreover, strain-stress simulations at
this state point revealed an elastic response with a Poisson’s ratio of ν ≈ −0.9, indicating behavior very close to the
hyper-auxetic condition.

These preliminary findings reinforce the conclusions presented in the manuscript. Nonetheless, they highlight the
need for more comprehensive investigations of size scaling, which will be pursued in future work.

PHASE SEPARATION OF POLYMER CHAINS

To allow comparison with network results, we also explore chain-based systems of different lengths l. We therefore
perform MD simulations of chains of equal length l = 1, 2, 5, 10, 49, 156, 500, varying the total number of all monomers
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FIG. S3. (a) Swelling curve for two system sizes as indicated in the legend for the c = 1% system. (b) Volume as a function of
time for the N = 21384, c = 1% system at α = 0.502. All results are obtained at P = −9.25× 10−4.

in the range n ∈ [10000, 20000].
To allow a quick scan of the phase diagram in order to look for phase separation, for each chain length we perform

several NVT simulations at different attractive strengths α and system volume. After allowing the system to equilibrate
for 2 × 106 time steps, we generate multiple equilibrium configurations by running simulations for 107 time steps.
These configurations are used to calculate the structure factor S(k) of the network, which is computed removing the
(almost negligible) contribution of the single chain form factor S1(k). Here, k is the modulus of the wave vector.
Subsequently, we extract the value at S(k) at the smallest simulated value of k, namely, kmin = 2π

L , with L representing
the box side. In this way, we have access to a proxy for the isothermal compressibility κT of the system (that is, the
inverse of the bulk modulus for network systems), since S(k → 0) is directly related to the system through equation

κT = S(0)
ρKBT [12]. It is important to note that κT theoretically approaches infinity at phase separation in infinite-size

systems, but for finite systems, density fluctuations remain finite, although showing a significant growth.
We report S(kmin)/S1(kmin) as a function of α for several isochores studied for the l = 49 system in Fig. S4(a) as

a representative example of our analysis. Increasing α, a clear increase in S(kmin) is observed, which passes through
an inflection point at a decreasing value of α with increasing volume. At large volumes, the behavior saturates,
collapsing onto the same curve, with a value of S(kmin)/S1(kmin) jumping by more than two orders of magnitude
for a slight increase of α. We identify this inflection point with the critical value αc that is required to induce phase
separation. As we aim to compare these results with the network system ones, it is particularly relevant to perform a
similar analysis with varying the chain length. This is reported in Fig. S4(b) where we report S(kmin)/S1(kmin) for
each studied l at the volume where the phase-separation temperature αc is smallest. Therefore, we observe a clear
decrease of αc with increasing l, approaching the value of the VPT (αV PT ∼ 0.65) for l > 100, as shown in the main
text in Fig. 3(b). Since networks generally contain predominantly longer chains that dominate the phase behavior, we
conclude that the volume phase transition (VPT) arises purely from the solvophobic attraction between monomers
as α increases. The universal value αV PT reflects the dominant role of long chains in both hydrogels and microgels.
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FIG. S4. Value of the structure factor at the minimum accessible wave vector S(kmin) as a function of α, rescaled by the single
chain form factor at the same point S1(kmin). (a) Results for the l = 49 system for different volumes increasing from bottom
to top in the interval V = 1 × 103 − 1 × 104. (b) Results for systems with various chain lengths as indicated in the legend at
the volume corresponding to the steepest variation. Vertical lines highlight the inflection points that identify the transition
temperature αc for each l.
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