
 S1

Supplementary Information for

FLIM-FRAPP: Near-Simultaneous Characterization of Multi-Scale
Polymer Dynamics via Fluorescence Microscopy
M. K. Jutze,a Walter W. Young,a Jasney Combs,b Owen C. Drescher,c Siddh Merchant,d and Reika
Katsumata*a

a. University of Massachusetts Amherst Department of Polymer Science and Engineering, 120 Governors Drive, Amherst MA 01003 USA
b. Ball State University Department of Biology, 622 N Martin Street, Muncie IN 47303 USA
c. University of Massachusetts Amherst Department of Physics, 710 North Pleasant Street, Amherst MA 01003 USA
d. University of Massachusetts Amherst Department of Chemical Engineering, 686 North Pleasant Street, Amherst MA 01003 USA
*Corresponding author: rkatsumata@umass.edu

Materials

Copper(I) bromide (Cu(I)Br), triethylamine (TEA), and basic alumina were purchased from Acros Organics
(Fair Lawn, NJ, USA). Methyl acrylate (MA), methyl methacrylate (MMA), and ethyl α-bromoisobutyrate
(EBiB) were purchased from Sigma-Aldrich (St. Louis, MO, USA). N, N, N’, N”, N”-Pentamethyl
diethylenetriamine (PMDETA) and 2-bromoisobutyryl bromide (BiBBr) were purchased from TCI
(Portland, OR, USA). Inhibitor removal resin and 4-chloro-7-nitrobenzofurazan (NBD-Cl) were purchased
from Alfa Aesar (Haverhill, MA, USA). Glacial acetic acid, tetrahydrofuran (THF), toluene, ethanol,
sodium bicarbonate, hydrochloric acid, methyl amino ethanol (MEA), and hexanes were purchased from
Fisher Scientific (Waltham, MA, USA). Dichloromethane (DCM) was purchased from Supelco (Millipore)
(Burlington, MA).

MA and MMA were purified by stirring in inhibitor removal resin and subsequent basic alumina column
filtration. Cu(I)Br was isolated by stirring in glacial acetic acid and subsequent vacuum filtration and drying
under reduced pressure. All other materials were used as received.

Synthesis of Unlabelled P(MA-stat-MMA) and Labelled NBD-P(MA-stat-MMA)

Labelled NBD-P(MA-stat-MMA) was synthesized using a fluorescently-labelled atom-transfer radical
polymerization (ATRP) initiator, NBD- BiB, according to procedures modified from Katzenstein et al
(Scheme S1a).1 NBD-Cl and MEA (molar ratio 1:3, respectively) were added to excess ethanol and
refluxed for 3 hours at 60 °C. NBD-aminol precipitated during the reaction and subsequent cool to room
temperature was collected by vacuum filtration and purified by two recrystallizations in ethanol, before
final filtration and drying under reduced pressure. The dried NBD-aminol was dissolved in excess THF,
followed by additions of TEA and BiBBr (molar ratio of NBD-aminol, TEA, and BiBBr of 1:5:1.5,
respectively). The reaction proceeded overnight at room temperature, after which the THF was removed
under reduced pressure and the reaction mixture was redissolved in dichloromethane. NBD-BiB was
separated via liquid-liquid extraction with three cycles consisting of successive washes with 1M
hydrochloric acid, concentrated aqueous sodium bicarbonate, and DI water. The organic fraction was
isolated, and NBD-BiB was collected under reduced pressure.

Unlabelled poly(methyl acrylate–stat–methyl methacrylate) (P(MA-stat-MMA)) polymer and P(MA-stat-
MMA) labelled with Nitrobenzofurazan (NBD-P(MA-stat-MMA)) were synthesized via ATRP reactions
(Scheme S1b), following the available literature.2,3 A freeze-pump-thaw procedure was repeated for a
minimum of five times to a solution of purified MA, MMA, PMDETA, toluene, and, in the case of
unlabelled synthesis, EBiB. The solution was then cannulated into a vial containing isolated Cu(I)Br and,
in the case of labelled synthesis, NBD-BiB having undergone a minimum of five pump – backfill cycles

Supplementary Information (SI) for Soft Matter.
This journal is © The Royal Society of Chemistry 2025

 S2

with dry N2. The molar ratio of Total Monomer: PMDETA: Cu(I)Br: EBiB: Toluene was 325:1.5:1:1:540
(MA:MMA was 1:1). The reaction vessel underwent a minimum of five freeze-pump-thaw cycles before
equilibrating at room temperature, heating to 65 °C, and reacting over the weekend. The resulting polymers
were purified and precipitated by passing through basic alumina columns and 0.45 μm PTFE filters into hot
hexanes twice before being collected under reduced pressure.

Scheme S1. Reaction scheme showing the synthetic pathway to poly(methyl acrylate – stat – methyl
methacrylate) (P(MA-stat-MMA)) and Nitrobenzofurazan (NBD) labelled P(MA-stat-MMA) (NBD-
P(MA-stat-MMA)): Synthesis of (a) labelled initiator NBD-BiB modified from Katzenstein et al.1 and (b)
statistical random copolymer via ATRP.

 S3

Nuclear magnetic resonance (NMR) spectroscopy

Proton NMR measurements were taken using a Bruker 500 MHz NMR instrument in ~4 mg/mL
chloroform-d (Thermo Scientific, Waltham, MA) solutions.

 S4

Figure S1. 500 MHz 1H NMR spectra of (a) unlabelled P(MA-stat-MMA), (b) labelled NBD-P(MA-stat-
MMA), and (c) NBD-labelled initiator NBD-BiB. Actual monomer ratios were determined by calibration
of the methyl peaks at δ ~3.6 ppm (hot pink circles) to an integration of 3, verification with the backbone
CH2 peaks at δ ~1-1.9 (pink triangles) ppm to an integration of ~2, and then subsequent calculations with
the ratio between the peaks at δ ~2.3 ppm (yellow squares) and δ ~1.0 ppm (green diamonds) (which are
the peaks unique to the monomers MA and MMA, respectively). Water and other impurities were subtracted
out from the integration values. For D. P. and number-averaged molecular weight (Mn) calculations, the
CH3 calibration peak (~ 3.6 ppm, integration of 3) was compared to either the unlabelled initiator peak at
δ ~ 4.5 ppm or the labelled initiator peak at δ ~ 6.3 ppm. Calculations and table containing obtained values
are below.

𝑀𝐴%+𝑀𝑀𝐴% = 100% → 𝑀𝑀𝐴% = 100 −𝑀𝐴%	

𝑀𝐴%:𝑀𝑀𝐴% =
𝑀𝐴	𝐶𝐻	𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛

1
:
𝑀𝑀𝐴	𝐶𝐻!	𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛

3
→

𝑀𝐴%
𝑀𝑀𝐴%

=
𝑀𝐴	𝐶𝐻
1

𝑀𝑀𝐴	𝐶𝐻!
3

	

𝑀𝐴%×
𝐶𝐻!
3

= 𝑀𝑀𝐴%×
𝐶𝐻
1
→ 𝑀𝐴%× 𝐶𝐻! = 3 × (100 −𝑀𝐴%) × 𝐶𝐻	

𝑀𝐴%× (𝐶𝐻! + 3 × 𝐶𝐻) = 300 × 𝐶𝐻 → 𝑀𝐴% =
300 × 𝐶𝐻

𝐶𝐻! + 3 × 𝐶𝐻

𝐶𝐻!	𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛
3

𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟	𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛
[2	(𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑙𝑒𝑑)	𝑜𝑟	1	(𝑙𝑎𝑏𝑒𝑙𝑙𝑒𝑑)]

= 𝐷. 𝑃.

 S5

 Unlabelled Labelled
CH3 calibration 3 3
Backbone CH2 1.9577 1.9342

MA CH 0.6454 0.6028
MMA CH3 1.4081 1.6433

%MA 57.9 52.39
%MMA 42.1 47.61
Initiator 0.0104 0.0025

D. P. 200 400
Mn (kDa) 18.4 20

Sample Label P(MA58-stat-MMA42) NBD-P(MA52-stat-MMA48)

Gel permeation chromatography (GPC)

GPC was performed using an Agilent Technologies 1260 Infinity, fitted with a Gel 5 μm guard column, a
PL Gel 5 μm mix D 1° column, and a PL Gel 5 μm Mix C 1° column. Both unlabelled P(MA-stat-MMA)
and labelled NBD-P(MA-stat-MMA) were run in ~3 mg/mL THF solutions at 1 mL/min with a toluene
flow marker.

Figure S2. GPC traces for both copolymers used in this investigation. Refractive Index (RI) response (solid
lines) was measured to calculate molecular weight (table below, PMMA standards) and UV response
(dashed line, 488nm laser) was measured to verify the absence of unreacted initiator in the fluorescently
labelled sample. Polymer peaks located at retention times 19-24 minutes; butylated hydroxytoluene (BHT)
inhibitor (present in the THF solvent used with the instrument) represented by peaks at 29-30 minutes;

 S6

toluene flow marker peaks at 30.5-32 minutes. The UV trace displays heightened response of a higher
molecular weight (lower retention time) shoulder, which we attribute to termination by combination
resulting in two flurophores on a single polymer chain (one at each end). We do not see this as significant
cause for concern as the dispersities by RI response remain relatively low, though it is worth noting.

 Mp, kDa Mn, kDa Mw, kDa Ð, kDa/kDa
P(MA58-stat-MMA42) 30.7 28.4 33.8 1.19

NBD-P(MA52-stat-MMA48) 41.5 36.8 44.2 1.20

Thermal Gravimetric Analysis (TGA)

TGA was performed using a TA Instruments Q50 Thermal Gravimetric Analyzer at a heating rate of
10 °C/min. Error is within ± 2 °C. Mass loss was less than 1.5% for all samples up to 145°C.

Figure S3. TGA curves for both copolymers used in this investigation, with 1.5% mass loss indicated by
the solid black line.

 S7

Differential scanning calorimetry (DSC)

DSC was performed using a TA Instruments Q20 Differential Scanning Calorimeter at a heating/cooling
rate of 10 °C/min for the first heat and cool cycles, and then a heating rate of 0.7 °C/min for the second heat
cycle (shown). Instrument error is within ± 2 °C.

Figure S4. Second-heat DSC curves for both copolymers used in this investigation, as well as for a 90 wt%
unlabelled to 10 wt% labelled blend, with Tg indicated for each by the vertical dashed lines and the onset
and offset (as measured by TA Universal Analysis Software) indicated by the shaded regions. Curves have
been vertically shifted for clarity. There are possible secondary Tgs between ~80-110 °C for the component
copolymers, but they have small magnitude combined with general noise in the higher-temperature region
due to the low rate. Homopolymer PMA is reported to have a Tg of -1 ± 1 °C,5 and PMMA a Tg of 112 °C.6
There is no visible secondary Tg in the blend system.

 Tg, °C Onset, °C Offset, °C

P(MA58-stat-MMA42) 37.1 27.8 44.8
90:10 wt% blend 31.2 22.9 37.3

NBD-P(MA52-stat-MMA48) 53.5 49.6 57.7

 S8

Zero-shear viscosity measurement

Zero-shear viscosity for our copolymer blend system was measured via rheology using a TA Instruments
Discovery HR 10. A frequency sweep was performed at 53, 73, 93, and 120 °C and the viscosity was fit to
a single exponential function for extrapolation to zero shear.

𝜂 = 𝐴 ∙ 𝑒𝑥𝑝 I"#
$
J + 𝑦% Eq. S1

where η is the viscosity, f is the frequency (shear rate), and A, t, and y0 are the fitting parameters for
amplitude, time constant, and vertical offset respectively.

Figure S5. Viscosity as a function of shear rate and temperature for blended P(MA58-stat-MMA42) (90
wt%) and NBD-P(MA52-stat-MMA48). The data was fit to a single exponential function (fitting parameters
below) from which the zero-shear viscosity η0 (also below) was extrapolated.

 S9

Parameter: A t y0 η0
Units: Pa·s 1/s Pa·s Pa·s

Temperature 53.1 °C
Value 3063.19 12.63 691.84 3755.03

Standard Error 70.60 0.84 52.44 87.95
Temperature 73.0 °C

Value 936.47 16.21 213.89 1150.36
Standard Error 24.44 1.26 20.63 31.98
Temperature 93.0 °C

Value 466.27 13.85 132.03 598.30
Standard Error 14.40 1.25 11.23 18.26
Temperature 120.0 °C

Value 189.37 14.65 45.94 235.31
Standard Error 6.36 1.45 5.11 8.16

Sample film preparation

Two films were spin-coated from THF solution (~10 wt% polymer) onto UV-Ozone treated (Jelight, Model
18 UVO Cleaner, 5 minutes) clean glass slides. The polymer components of the solution were composed
of 10:90 wt% labelled:unlabelled P(MA-stat-MMA) based on self-quenching measurements below.
Samples were spun at a rate of 1000 rpm for 1 minute, and dried and annealed under vacuum (<1 mTorr)
at 60°C overnight.

 S10

Self-quenching test

To assess the degree of self-quenching, fluorescence intensity was measured using a Nikon Eclipse Ti A1
scanning confocal laser microscope equipped with a 488 nm excitation laser and GaAsP PMTs and hybrid
TCSPC detectors to ensure fluorophore concentration stayed below the self-quenching limit. Figure S6
shows no evidence of self-quenching in blended samples up to ~12.5 wt% labelled polymer (~0.07 wt%
NBD); the relationship between intensity and concentration begins to plateau approaching ~25 wt% labelled
polymer (~0.14 wt% NBD), which indicates the onset of self-quenching. The intensity detection limit was
reached in the 25wt% samples, meaning the severity of the plateau may be less in reality. However, based
on this data we hold that samples with less than 12.5 wt% labelled polymer will not self-quench.

Figure S6. Fluorescence intensity as a function of wt% labelled polymer in a series of thin films. Error bars
represent 5% error.

Ellipsometry

A single-wavelength (6328Å HeNe Gas Laser) Gaertner Scientific Corporation LSE ellipsometer using
Gaertner Ellipsometer Measurement Program (LGEMP) software was used to determine film thicknesses
via the Cauchy model.7 The thicknesses of the two films used in this study were found to be 166.2 ± 5.7
nm and 169.5 ± 8.2 nm, from an average and standard deviation of 5-6 points in the centre of the film.

FLIM-FRAPP

FLIM and FRAPP measurements were conducted on Nikon Eclipse Ti A1 scanning confocal laser
microscope using Nikon NIS Elements software. The microscope was equipped with a 488 nm excitation
laser, GaAsP PMTs and hybrid TCSPC detectors, and a Tokai Hit TP-CHSQ-C temperature-controlled
stage (Thermo Plate Cooling and Heating Controller, CBU Water Cooling Controller). The heating stage
temperature was calibrated with a VWR Traceable 2-Channel Thermometer in direct physical contact with
the sample, with error ± (0.3% + 1) °C.

 S11

Tg determination from FLIM

For FLIM, the field of view was scanned multiple times at each temperature within the full range (~10-
50°C) to build a color-coded map of averaged lifetime values; each pixel in the 512×512 image corresponds
to one lifetime value for that area on the film.

The temperature was increased stepwise over the course of the FLIM investigations. After every increase,
the film was held at temperature and a color-coded map of the sample field of view was generated, where
each pixel corresponded to the average lifetime of all photons in that space. Subsequently averaging over
the entire area provided one lifetime value per temperature with minimal error (95% confidence interval).
Rather than approximating two separate trends with linear fits, we accurately determined the glass transition
temperature using the logarithmic hyperbolic cosine equation used by Dalnoki-Veress et al.8

𝜏&'()*'+) = 𝑤 I,"-
.
J ∙ ln Icosh I/"/!

0
JJ + T𝑇 − 𝑇1V ∙ I

,2-
.
J + 𝑐 Eq. S2

where the fitting parameters w, M, G, and c (Table S1) correspond to the width of the transition region, the
slope of the rubbery region, the slope of the glassy region, and the y-axis (lifetime) value at Tg,lifetime,
respectively.8 To aid in proper fitting, w is set to 10 °C. “Initial guesses” and reasonable order-of-magnitude
limits were input for each variable, and the built-in Origin Pro fitting program converged the fit with R2
values above 0.980 for all datasets.

Table S1. Fitting parameters for all FLIM runs reported.

 Parameter: w M G T c
ID Units: °C 1/°C 1/°C °C ns/ns

1

Run 1
Value 10.00 -2.46E-04 -9.27E-05 38.21 1.00

Standard Error 0.00 1.56E-05 5.31E-06 2.03 3.23E-04
Run 2

Value 10.00 -1.86E-04 -2.87E-05 34.79 1.00
Standard Error 0.00 1.61E-05 8.88E-06 2.52 2.59E-04

Run 3
Value 10.00 -1.63E-04 -2.63E-05 37.89 1.00

Standard Error 0.00 2.21E-05 8.36E-06 3.36 2.91E-04

2

Run 1
Value 10.00 -2.44E-04 -8.77E-05 31.55 1.00

Standard Error 0.00 1.81E-05 1.54E-05 3.16 5.21E-04
Run 2

Value 10.00 -2.48E-04 -4.46E-05 37.45 1.00
Standard Error 0.00 2.99E-05 1.15E-05 2.98 4.03E-04

D determination from FRAPP

The self-diffusion coefficient (D) was obtained from FRAPP following analysis procedures outlined in
Katzenstein et al.1 An initial region of interest (ROI) in the form of a regular series of lines ~6 μm wide and
~330 μm long was photobleached in the centre of the field of view by the 488 nm excitation laser, generating
a sinusoidal intensity profile. Successive fluorescence scans were taken every 15 minutes following the

 S12

initial bleach to create an image sequence documenting two-dimensional diffusion over multiple hours;
over time as polymer diffusion occurs, the amplitude of the sinusoid decreases. A vertically averaged linear
intensity profile was extracted from each image using ImageJ, and input into a Python script (see Appendix)
for normalization, peak fitting, and calculation of diffusion coefficient.

The Python script first stored and sorted the input .csv files with the raw intensity data. To account for
photobleaching over time due to repeated exposure to the excitation laser during imaging, the intensity
values for each timestamp were normalized by the average intensity of a ~30000 μm2 “background” area
outside of the bleached region (Figure 2a in the main manuscript). To account for potential artifacts or
bright spots in the film, the self-normalized intensity values for each image were also normalized via
subtraction of the intensity values from a pre-bleach scan of the same area (which was similarly self-
normalized). Normalized intensity was then plotted versus x-distance, and peaks and valleys in the sinusoid
profile were extracted and stored. From these values, the amplitude and wavelength (pitch size) were
calculated. The average amplitude associated with each timestamp was then divided by the initial amplitude
A0 of the bleached pattern at time t=0, and plotted against time. A linear regression was performed, fitting
the data to Equation S3 and obtaining D by way of the slope of the line:

ln I3($)
3"
J = "67#8

9#
𝑡 Eq. S3

where A(t) is the amplitude at time t, A0 is the amplitude at time t=0, D is the self-diffusion coefficient, and
λ is the wavelength of the bleached pattern.

D calculations from literature

D of entangled P(MA-stat-MMA) has not been experimentally reported in the literature for our molecular
weight and temperature. To validate our results, we performed calculations from theory using literature
values for associated parameters. Graessley9 and Pearson et al.10 propose a calculation method using
rheological data by

 𝐷 = :/;<$=!#

>?",%
 Eq. S4

where D is the self-diffusion coefficient, k is the Boltzmann constant, T is the temperature, ρ is the density,
NA is Avogadro’s number, 𝑅1. is the squared radius of gyration of the polymer, η0 is the zero-shear viscosity,
and Me is the entanglement molecular weight.

The temperature, T, was ~53 °C (326 K) for all FRAPP runs. Fetters et al. provide a density of 1.11 g/cm3
for PMA and 1.14 g/cm3 for PMMA, a mean-squared end-to-end distance over molecular weight (<r2>/M,
used to calculate 𝑅1.) of 0.436 Å2·mol/g for PMA and 0.425 Å2·mol/g for atactic PMMA, and an
entanglement molecular weight of 11.0 kDa for PMA and 10.1 kDa for PMMA.11 Wu reports Me to be 9.07
kDa for PMA and 9.2 kDa for PMMA,12 so the final value used is an average between the two (10.04 kDa
for PMA and 9.65 kDa for PMMA). To obtain copolymer estimates, all homopolymer values were averaged
according to the sample’s monomer composition (for example, the density of a P(MA58-co-MMA42) sample
was estimated as (1.11·0.58) + (1.14·0.42) = 1.12 g/cm3).

Thus, we estimate D for our system to be 3.4×10-12 ± 8.0×10-18 cm2/s.

 S13

References

1 J. M. Katzenstein, D. W. Janes, H. E. Hocker, J. K. Chandler and C. J. Ellison, Macromolecules, 2012,
45, 1544–1552.

2 M. Semsarzadeh, M. Rostami Daronkola and M. Abdollahi, J. Macromol. Sci. Pure Appl. Chem., 2007,
44, 953–961.

3 C.-F. J. Kuo, J.-B. Chen, P.-Y. Chen and G. R. S. Dewangga, Text. Res. J., 2019, 89, 5177–5186.
4 A. Limer and D. M. Haddleton, Macromolecules, 2006, 39, 1353–1358.
5 L. Andreozzi, C. Autiero, M. Faetti, M. Giordano and F. Zulli, J. Non-Cryst. Solids, 2006, 352, 5050–

5054.
6 B. Lu, K. Lamnawar, A. Maazouz and H. Zhang, Soft Matter, 2016, 12, 3252–3264.
7 J. N. Hilfiker and J. A. Woollam, in Encyclopedia of Modern Optics, ed. R. D. Guenther, Elsevier,

Oxford, 2005, pp. 297–307.
8 K. Dalnoki-Veress, J. A. Forrest, C. Murray, C. Gigault and J. R. Dutcher, Phys. Rev. E, 2001, 63,

031801.
9 W. W. Graessley, J. Polym. Sci. Polym. Phys. Ed., 1980, 18, 27–34.
10 D. S. Pearson, G. Ver Strate, E. Von Meerwall and F. C. Schilling, Macromolecules, 1987, 20,

1133–1141.
11 L. J. Fetters, D. J. Lohse and W. W. Graessley, J. Polym. Sci. Part B Polym. Phys., 1999, 37,

1023–1033.
12 S. Wu, J. Polym. Sci. Part B Polym. Phys., 1989, 27, 723–741.

 S14

APPENDIX: Python Script for Calculation of Self-Diffusion Coefficient

-*- coding: utf-8 -*-
"""
Created on Mon Dec 16 17:41:30 2024
Last updated: Apr 23 2025
"""

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats, signal
import pandas as pd
import sys
import os

Set up directory and filenames

output_dir = r # Choose where to store output plots (copy as path -> paste after
"r" - path must be in "")
if not os.path.exists(output_dir):
 os.makedirs(output_dir)

df = pd.read_csv(r) # Paste file path for intensity values after "r" - path
must be in ""
df_background = pd.read_csv(r) # Paste file path for background values after
"r" - path must be in ""

Detect which columns to treat as time points

We'll look for columns that can be converted to an integer (e.g. "0", "15",
"30")
and are present in both data frames. We also skip "prebleach".
time_candidates = []
for col in df.columns:
 if col.lower() == "prebleach":
 continue
 try:
 # If col is numeric (like "0", "15", "30", ...), convert to int
 t = int(col)
 # Only accept this time if it also exists in df_background
 if col in df_background.columns:
 time_candidates.append(t)
 except ValueError:
 # This column name isn’t numeric, so ignore it
 pass

Sort the resulting list of time points
time_points = sorted(time_candidates)

if len(time_points) == 0:
 print("No numeric time columns found in both data files. Please check your
CSVs.")
 sys.exit(1)

print("Detected time points:", time_points)

 S15

Extract "prebleach" arrays

if "prebleach" not in df.columns or "prebleach" not in df_background.columns:
 print("'prebleach' column not found in one or both data frames.")
 sys.exit(1)

background = np.array(df["prebleach"])
average_background = np.average(background)

Build corresponding arrays for each time point,
making sure to include all you want to analyze
D_arrays = [np.array(df[str(t)]) for t in time_points] # intensities
D_b_arrays = [np.array(df_background[str(t)]) for t in time_points] #
background

Normalization

Step 1: self-normalized prebleach
avg_b_prebleach = np.average(df_background["prebleach"])
S_N_prebleach = background / avg_b_prebleach

Step 2: self-normalize each time array by its background
S_N_time_series = []
for i in range(len(D_arrays)):
 avg_b = np.average(D_b_arrays[i])
 S_N_array = D_arrays[i] / avg_b
 S_N_time_series.append(S_N_array)

Step 3: full normalization: subtract S_N(prebleach) from S_N_time
normalized_intensities = []
for i in range(len(S_N_time_series)):
 # Important to ensure indexing is consistent
 # If the number of cells/traces changed over time, you may need a length
check
 norm_i = S_N_time_series[i] - S_N_prebleach
 normalized_intensities.append(norm_i)

Parameters

scale_factor = 1 / 1.61 # for x-axis distance, microns, etc. - 1.61 microns =
1 px

Lists to store results
amplitude_fp_mean = []
average_wavelengths = []
all_data_for_combined = []

Peak detection

for i, y_data in enumerate(normalized_intensities):
 current_time = time_points[i]

 S16

 # Because we sometimes get incomplete columns or other issues,
 # protect against empty arrays:
 if len(y_data) == 0:
 amplitude_fp_mean.append(np.nan)
 average_wavelengths.append(np.nan)
 all_data_for_combined.append(y_data)
 continue

 # Improved peak detection:
 # 'prominence' is often more robust than a fixed 'height' threshold.
 # Adjust these values as needed for your data.
 peaks, _ = signal.find_peaks(
 y_data,
 prominence=0.05, # tries to ensure only "significant" peaks are found
 distance=10 # minimum distance between peaks (tweak as necessary)
)
 # For valleys, invert y_data and do the same
 valleys, _ = signal.find_peaks(
 -y_data,
 prominence=0.05,
 distance=10
)

 # Optionally, ignore endpoints if you wish:
 # e.g. drop any peak/valley at the first or last few data points
 # to avoid false detection near boundaries.
 # Example: require that peaks be at indices 2:-2, etc.
 valid_peaks = [p for p in peaks if p > 2 and p < (len(y_data) - 2)]
 valid_valleys = [v for v in valleys if v > 2 and v < (len(y_data) - 2)]
 valid_peaks = np.array(valid_peaks)
 valid_valleys = np.array(valid_valleys)

 if len(valid_peaks) == 0 or len(valid_valleys) == 0:
 print(f"No peaks or valleys detected at time {current_time} minutes.")
 amplitude_fp_mean.append(np.nan)
 average_wavelengths.append(np.nan)
 all_data_for_combined.append(y_data)
 continue

 # Extract the intensities at those indices
 max_intensities = y_data[valid_peaks]
 min_intensities = y_data[valid_valleys]

 # If you still need the "paired" approach (peak-valley-peak-valley...),
 # you can do additional logic here. A simpler approach is to measure
 # average amplitude from all recognized peaks & valleys.
 # For example:
 # amplitude ~ average(peak) - average(valley)
 # But if your analysis requires a strict pairing, you'll need more logic
 # (e.g., interleave them, ensure same length, etc.)

 mean_peak = np.mean(max_intensities)
 mean_valley = np.mean(min_intensities)
 amplitude_this_time = mean_peak - mean_valley

 # If you want to measure wavelength, you can measure peak-to-peak or
 # valley-to-valley distances. The simplest approach is average difference:

 S17

 if len(valid_peaks) > 1:
 peak_dists = np.diff(valid_peaks)
 valley_dists = np.diff(valid_valleys)
 # Example of a naive "average wavelength" from mean of peak-peak and
valley-valley
 avg_wavelength = np.mean([np.mean(peak_dists), np.mean(valley_dists)])
 else:
 avg_wavelength = np.nan

 amplitude_fp_mean.append(amplitude_this_time)
 average_wavelengths.append(avg_wavelength)
 all_data_for_combined.append(y_data)

 # ----------------------
 # Create individual plots
 # ----------------------
 plt.figure(figsize=(8, 4), dpi=150)
 x_axis = np.arange(len(y_data)) * scale_factor
 plt.plot(x_axis, y_data, label='Data')
 plt.scatter(valid_peaks * scale_factor, max_intensities, color='red',
marker='^', label='Peaks')
 plt.scatter(valid_valleys * scale_factor, min_intensities, color='green',
marker='v', label='Valleys')
 plt.title(f"Peak/Valley Plot for Timepoint {current_time} min")
 plt.xlabel("Distance (µm)")
 plt.ylabel("Normalized Intensity (a.u.)")
 plt.legend(loc='best')
 plt.tight_layout()
 outname = os.path.join(output_dir, f"dataset_{current_time}.png")
 plt.savefig(outname, dpi=300)
 plt.show()

Amplitude vs. Time

amplitude_fp_mean[i] corresponds to time_points[i].
If the first amplitude corresponds to time=0, that is often A0.
If your time=0 amplitude is indeed A0, do:
A0 = amplitude_fp_mean[0] if not np.isnan(amplitude_fp_mean[0]) else np.nan

Build an array of ln(A(t)/A0)
log_normalized_amplitude = []
time_for_regression = []

for i, A_t in enumerate(amplitude_fp_mean):
 if i == 0:
 # skip the first point to exclude ln(A(0)/A0)
 continue
 # Protect against NaN or zero
 if A0 is not None and A0 != 0 and not np.isnan(A_t) and not np.isnan(A0):
 log_normalized_amplitude.append(np.log(A_t / A0))
 time_for_regression.append(time_points[i])

if len(log_normalized_amplitude) > 2:
 # Linear regression
 slope, intercept, r_value, p_value, std_err = stats.linregress(
 time_for_regression, log_normalized_amplitude

 S18

)
 r_squared = r_value**2
else:
 slope, intercept, r_squared = np.nan, np.nan, np.nan

D = (((avg wavelength * 10^-4)^2) * slope) / (-4 pi^2)
mean_wavelength_in_cm = ((np.nanmean(average_wavelengths) * scale_factor)* 1e-
4) # convert from px to microns to cm
stdv_wavelength = (np.std(average_wavelengths) * scale_factor) * 1e-4
Diffusion_coefficient = ((mean_wavelength_in_cm**2) * (slope/60)) / (-4 *
np.pi**2)

print("Wavelength (cm):", mean_wavelength_in_cm)
print("Wavelength Std. Dev. (cm):", stdv_wavelength)
print("Slope (1/s):", slope/60)
print("Slope Error (1/s):", std_err/60)
print("Intercept:", intercept)
print("R²:", r_squared)
print("Diffusion coefficient (cm²/s):", Diffusion_coefficient)
print("Plot Data (ln(A(t)/A0) vs t)", log_normalized_amplitude,
time_for_regression)

Prepare data for plotting the fit line
y_fit = []
for t in time_for_regression:
 y_fit.append(slope * t + intercept)

Plot the decay

plt.figure(figsize=(8, 4), dpi=150)
plt.scatter(time_for_regression, log_normalized_amplitude, label='Experimental
data')
if len(time_for_regression) == len(y_fit):
 plt.plot(time_for_regression, y_fit, label='Linear fit', linestyle='--')

plt.title("Exponential Decay of Normalized Amplitude Over Time")
plt.xlabel("Time, minutes")
plt.ylabel("ln(A(t)/A\u2080), a. u.")
equation_text = (
 f"ln(A(t)/A\u2080) = {slope:.4e}·t + {intercept:.4e}\n"
 f"R² = {r_squared:.4f}"
)
plt.text(
 0.05, 0.2, equation_text,
 transform=plt.gca().transAxes,
 fontsize=10, verticalalignment='top',
 bbox=dict(boxstyle="round", fc="w")
)
plt.legend(loc='best')
plt.tight_layout()
plt.savefig(os.path.join(output_dir, "decay_plot.png"), dpi=300)
plt.show()

Combined Plot

 S19

plt.figure(figsize=(10, 5), dpi=150)
for i, data_line in enumerate(all_data_for_combined):
 x_axis = np.arange(len(data_line)) * scale_factor
 plt.plot(x_axis, data_line, label=f"{time_points[i]} min")
plt.title("Combined Data Plot (No Peak/Valley Markers)")
plt.xlabel("Distance (µm)")
plt.ylabel("Normalized Intensity (a.u.)")
plt.legend(loc="upper right", fontsize="x-small")
plt.tight_layout()
plt.savefig(os.path.join(output_dir, "combined.png"), dpi=300)
plt.show()

