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I. ANALYTICAL SOLUTION OF THE MODEL

A. Dynamical equations for deformation and composition

We start with the full free energy

F [h, ϕ1, ϕ2] = Fe[h, ϕ1] + Fc[ϕ1, ϕ2] =

∫ [
1

2
σ(∇h)

2
+

1

2
κ
(
∇2h− c1ϕ1

)2]
d2r

+

∫  3∑
i=1

ϕi lnϕi +
∑
i ̸=j

χi,j

(
ϕiϕj − λ2∇ϕi · ∇ϕj

)
+ ξϕ1ϕ2ϕ3

d2r . (S1)

Membrane height field h(r) follows the Model A dynamics (not conserved) and volume fractions of molecules ϕ1,2(r)
follow the Model B dynamics (conserved)

∂h

∂t
= −Mh

δF

δh
, (S2)

∂ϕi

∂t
= Mi∇2 δF

δϕi
. (S3)

The volume fraction of the last component ϕ3 = 1− ϕ1 − ϕ2 is dependent on ϕ1,2 by incompressibility. As mentioned
in the main text, we nondimensionalize all the parameters: space and time are measured in units of λ and nkBTM/λ2,
respectively, and energy is measured in units of nkBT . Hence, we set M = 1 and λ = 1 in the following derivation.
The equations of motion are

∂h

∂t
= σ∇2h− κ∇4h+ κc1∇2ϕ1, (S4)

∂ϕ1

∂t
= κc21∇2ϕ1 − κc1∇4h+∇2 δFc

δϕ1
, (S5)

∂ϕ2

∂t
= ∇2 δFc

δϕ2
. (S6)
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where δFc

δϕ1,2
are the chemical potentials due to the (generalized) Flory-Huggins free energy:

δFc

δϕ1
= ln

(
ϕ1

1− ϕ1 − ϕ2

)
+ (χ12 − χ23)(1 +∇2)ϕ2 + χ13(1 +∇2)(1− 2ϕ1 − ϕ2) + ξϕ2(1− 2ϕ1 − ϕ2), (S7)

δFc

δϕ2
= ln

(
ϕ2

1− ϕ1 − ϕ2

)
+ (χ12 − χ13)(1 +∇2)ϕ1 + χ23(1 +∇2)(1− ϕ1 − 2ϕ2) + ξϕ1(1− ϕ1 − 2ϕ2). (S8)

B. Pattern size and morphology

Fourier transforming Eq. (S4) yields the steady-state solution for h:

h(k) = − κc1
κk2 + σ

ϕ1(k). (S9)

Let δϕi = ϕi − ϕ̄i. The free energy for membrane deformation reduces to

Fe[h, ϕ1] =

∫ [
1

2
σ(∇h)

2
+

1

2
κ
(
∇2h− c1ϕ̄1 − c1δϕ1

)2]
d2r (S10)

=
A

2
κc21ϕ̄1

2
+

∫
d2k

(2π)2

[
1

2
(σ + κk2)k2h(k)h(−k) +

1

2
κc21δϕ1(k)δϕ1(−k) + κc1k

2ϕ̄1δϕ1(−k)h(k)

]
(S11)

=
A

2
κc21ϕ̄1

2
+

1

2
κc21

∫
|δϕ1(k)|2

1 + κk2

σ

d2k

(2π)2
, (S12)

where A is the total area of the membrane.
Assuming phase separation along the tie lines of Fc (which can be determined by the convex hull construction [1]),

the ratio of the concentration change of the two phospholipid species: s = −δϕ2/δϕ1.

Fc[ϕ1, ϕ2] =Afc(ϕ̄1, ϕ̄2) +

∫ [
−a

2
δϕ2

1 +
c

3
δϕ3

1 +
b

4
δϕ4

1 +
1

2
µ(∇δϕ1)

2

]
d2r , (S13)

The expansion parameters are:

µ =2(sχ12 − (s− 1)χ13 + s(s− 1)χ23), (S14)

a =−
(
ϕ̄−1
1 + s2ϕ̄−1

2 + (s− 1)2ϕ̄−1
3

)
+ µ+ 2ξ

[
s(s− 1)ϕ̄1 − (s− 1)ϕ̄2 + sϕ̄3

]
, (S15)

c =
1

2

(
−ϕ̄−2

1 + s3ϕ̄−2
2 − (s− 1)3ϕ̄−2

3 − 6s(s− 1)ξ
)
, (S16)

b =
1

3

(
ϕ̄−3
1 + s4ϕ̄−3

2 + (s− 1)4ϕ̄−3
3

)
. (S17)

Here, µ is related to the line tension between the two phases. In the absence of membrane deformation (h = 0), phase
separation requires a > 0. Note that b > 0 ensures that δϕ1 remains bounded.
Combining Eq. (S12) and Eq. (S13) leads to the total free energy given by Eq. (7) of the main text (shifting the

zero of the free energy by σA to include the surface energy of the undeformed membrane):

Feff [δϕ1] =

[
σ + fc(ϕ̄1, ϕ̄2) +

1

2
κc21ϕ̄

2
1

]
A+

1

2

∫ (
σκc21

σ + κk2
+ µk2

)
|δϕ1(k)|2

d2k

(2π)2

+

∫ [
−a

2
δϕ1(r)

2 +
c

3
δϕ1(r)

3 +
b

4
δϕ1(r)

4

]
d2r .

(S18)

The first term gives the effective surface energy σeff = σ+fc(ϕ̄1, ϕ̄2)+
1
2κc

2
1ϕ̄

2
1 [Eq. (8) of the main text]. Minimizing

the free energy with respect to |k| leads to k2 = k2c =
√

σc21
µ − σ

κ [Eq. (9) of the main text]. Expanding the free energy

around kc:

σκc21
σ + κk2

+ µk2 = 2
√
µσc21 −

σµ

κ
+

√
µ3

σc21

(
k2 − k2c

)2
+O

[
(k2 − k2c )

3
]
. (S19)
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Thus, the dynamical equation for ϕ1 is

∂δϕ1

∂t
= ∇2 δF

δϕ1
= ∇2

[(
−aeff +

√
µ3

σc21

(
k2c +∇2

)2)
δϕ1 + cδϕ2

1 + bδϕ3
1

]
, (S20)

where

aeff = a− 2
√
µσc21 +

σµ

κ
. (S21)

Eq. (S20) has the same form as the conserved (or derivative) Swift-Hohenberg equation [2–4]. Applying amplitude
expansion δϕ1 = ϕ1 − ϕ̄1 =

∑
n Ane

ikn·r + c.c. with |kn| = kc and n = 3 (i.e., the wavevectors k1,2,3 are of the same
magnitude and oriented at 120 degrees with respect to each other) leads to the amplitude equations:

dA1

dτ
=
(
aeff − 3b|A1|2 − 6b|A2|2 − 6b|A3|2

)
A1 − 2cA∗

2A
∗
3, (S22)

dA2

dτ
=
(
aeff − 3b|A2|2 − 6b|A1|2 − 6b|A3|2

)
A2 − 2cA∗

1A
∗
3, (S23)

dA3

dτ
=
(
aeff − 3b|A3|2 − 6b|A1|2 − 6b|A2|2

)
A3 − 2cA∗

1A
∗
2. (S24)

where τ = k2c t. Let Ai = Ri exp(iθi). The dynamics of the amplitude R and phase θ are given by

Ṙ1

R1
=

d lnR1

dτ
= Re

{
d lnA1

dτ

}
= aeff − 3bR2

1 − 6bR2
2 − 6bR2

3 − 2c
R2R3

R1
cos(θ1 + θ2 + θ3), (S25)

θ̇1 =
dθ1
dτ

= Im

{
d lnA1

dτ

}
= 2c

R2R3

R1
sin(θ1 + θ2 + θ3). (S26)

The sum of phases Θ = θ1 + θ2 + θ3 evolves following

dΘ

dτ
= 2cQ sinΘ, where Q =

∑
cyc.

Ri+1Ri+2

Ri
> 0, (S27)

where cyc. represents cyclic summation over indices i = 1, 2, 3. Thus, Θ has two fixed points Θ = 0 and Θ = π.
However, only the one corresponding to cosΘ = −sgn(c) is stable. Substituting it to the amplitude equation for R1

leads to

dR1

dτ
= R1

(
aeff − 3bR2

1 − 6bR2
2 − 6bR2

3 + 2|c|R2R3

R1

)
. (S28)

The fixed points of this equation represents different patterns. To analyze the stability of the fixed points, we also
compute the Jacobian:

J =
∂Ṙ

∂R
=

aeff − 9bR2
1 − 6bR2

2 − 6bR2
3 −12bR1R2 + 2|c|R3 −12bR1R3 + 2|c|R2

−12bR1R2 + 2|c|R3 aeff − 9bR2
2 − 6bR2

1 − 6bR2
3 −12bR2R3 + 2|c|R1

−12bR1R3 + 2|c|R2 −12bR2R3 + 2|c|R1 aeff − 9bR2
3 − 6bR2

1 − 6bR2
2

 . (S29)

This equation has three fixed points:

• Uniform state: R1 = R2 = R3 = 0. The fixed point is stable when aeff < 0.

• Stripe state: R1 =
√

aeff

3b and R2 = R3 = 0. The Jacobian is

J =

−2aeff 0 0
0 −aeff 2|c|

√
aeff

3b

0 2|c|
√

aeff

3b −aeff

 . (S30)

The fixed point is stable when the eigenvalues have negative real parts, which requires

a2eff − 4c2
aeff
3b

> 0 ⇒ aeffb

c2
>

4

3
. (S31)
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• Dots (hexagonal) state: R1 = R2 = R3 = R, which is given by

aeff + 2|c|R− 15bR2 = 0 ⇒ R± =
|c| ±

√
c2 + 15aeffb

15b
=

|c|
15b

(
1±

√
1 +

15aeffb

c2

)
. (S32)

The solution exists when aeff > − c2

15b . By computing the eigenvalues of the Jacobian, it can be shown that R−

is always an unstable fixed point, while R+ is stable when aeff < 16c2

3b .

Combining the above results, we find that the stability of the fixed points can be captured by a single control parameter

g = aeffb
c2 ≡ b

c2

(
a− 2

√
c21σµ+ µσ

κ

)
. The uniform state is stable when g < 0, the stripe state is stable when g > 4

3 ,

and the dots state is stable when − 1
15 < g < 16

3 .

C. Total free energy density

Here, we present the free energy density of the patterns, which is used in Fig. 3 of the main text. Following
Eq. (S18), the free energy density of the system is given by

f = f0 −
aeff
2

〈
δϕ2

1

〉
+

c

3

〈
δϕ3

1

〉
+

b

4

〈
δϕ4

1

〉
, (S33)

where f0 is the free energy density of the uniform state, and ⟨·⟩ represents spatial averaging over the entire system.
For the stripe state, we have:〈

ϕ2
〉
= 2R2 =

2aeff
3b

,
〈
ϕ3
〉
= 0,

〈
ϕ4
〉
= 6R4 =

2a2eff
3b2

. (S34)

fstripe = f0 −
aeff
2

2aeff
3b

+
b

4

2a2eff
3b2

= f0 −
a2eff
6b

. (S35)

For the dot state, we have: 〈
ϕ2
〉
= 6R2,

〈
ϕ3
〉
= −12R3sgn(c),

〈
ϕ4
〉
= 90R4. (S36)

fdot = f0 −R2

(
|c|R+

3

2
aeff

)
, where R =

|c|
15b

(
1 +

√
1 +

15aeffb

c2

)
. (S37)

D. Validity of the tie line approximation

In order to justify expanding the free energy along the tie line, we plot the histogram of local composition
(ϕ1(r), ϕ2(r)) and compare it with the tie line. Fig. S1 shows the histograms for the 4 steady-state patterns shown
in Fig. 1C of the main text. Indeed, the histograms are peaked around the tie line, which justifies fixing the ratio
s = −δϕ2/δϕ1 to that of the tie line.

E. Using analytical µ to predict characteristic domain size

In Fig. 2C,D of the main text, the characteristic domain size was captured with a single fitting parameter µ. This
parameter can also be estimated from Eq. (S14), which leads to slightly worse agreement (see Fig. S2).

II. DETAILS OF THE NUMERICAL SIMULATIONS

The dynamical equations Eq. (S4)–(S6) are solved in a L × L square domain with periodic boundary conditions.
Space is discretized into N ×N grid points, and time is discretized to steps of ∆t. Time integration is performed in
the Fourier space yni (k) =

∫
yni (r) exp(−ik · r)d2r using an implicit-explicit scheme:

yn+1(k)− yn(k)

∆t
= L[yn+1(k)] +N [yn(k)], (S38)
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FIG. S1. The probability density function (PDF) of the local composition P (ϕ1, ϕ2) for the 4 steady-state patterns shown in
Fig. 1C of the main text (from left to right are the PDFs corresponding to the upper left, upper right, lower left, and lower
right panels of Fig. 1C). The white dashed lines are the tie lines obtained from the convex hull construction. For the last two
panels, the color bar is truncated at 500 to make the distribution visible.

A B

Fig.S2: using analytical  leads to slightly worse agreementμ

FIG. S2. The characteristic domain size as functions of (A) the bending modulus κ and (B) surface tension σ. The parameters
are the same as Fig. 2C,D of the main text, except for µ which is estimated from Eq. (S14) rather than obtained by fitting.

where y = (h, ϕ1, ϕ2)
T and n labels the time steps. L(y) = A · y is the linear and implicit part of the equation and

N is the explicit part. They are converted back and forth between real space and Fourier space representations [5].
For this study, the implicit part is diagonal: Li = k2Aiyi, with A =

(
σ + κk2, κc21 + 2χ13λ

2k2, 2χ23λ
2k2
)
. All the

other terms in the equation are encompassed in the explicit part N . Thus, the update rule reads:

yn+1
i (k) =

yni (k) +Ni[y
n
i (k)]

1 +Aik2∆t
. (S39)

To improve the accuracy, we also perform mpc predictor-corrector iterations for each time step:

yn+1,j+1
i (k) =

yni (k) +
1
2

(
Ni[y

n
i (k)] +Ni

[
yn+1,j
i (k)

])
1 +Aik2∆t

, (S40)

where j labels the predictor-corrector iterations with yn+1,0
i = yni and yn+1

i = y
n+1,mpc

i .
The typical parameters used in this work are L = 1000λ, N = 512, ∆t = 1, mpc = 3.

III. TEMPERATURE DEPENDENCE OF THE PATTERNS

Here, we assume that the material properties and the interaction energies do not vary strongly with temperature.
Thus, the temperature dependence predominantly enters through the entropy term. Since energy is measured in units
of nkBT , the rescaled parameters (σ̄, κ̄, χ, ξ) scale with temperature with a factor of 1/(kBT ). In the simulations,
we tune temperature by rescaling these parameters by a factor of T0

T , where T0 is the reference temperature. Fig. S3
shows that the coarsening is arrested at a finite length scale (left), which decreases with temperature (right). Fig. S4
shows the hysteresis of the pattern morphology with respect to temperature. As the temperature is decreased, the
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SI figures

A B

Fig.S2: possible temperature dependence of the characteristic 
domain size.  
Note that we need to be clear about the assumption that none of the 
interaction parameters strongly depends on temperature. 

A B
FIG. S3. (A) The time evolution of the characteristic domain size for different temperatures T . Mean composition: (ϕ̄1, ϕ̄2) =
(0.38, 0.36). All the other parameters are the same as in Fig. 1 of the main text. (B) The characteristic domain size at long
times as a function of the temperature T . Both time and length are non-dimensionalized as described in the main text. T0 is
the reference temperature used in the non-dimensionalization.

Fig. 4 Temperature hysteresis 
The animation needs to be remade since the colorbar 
was problematic due to the last snapshot? 

ϕ1

FIG. S4. Pattern hysteresis with respect to temperature. The temperature is first decreased and then increased according to
the black arrow. Mean composition: (ϕ̄1, ϕ̄2) = (0.45, 0.40). All the other parameters are the same as in Fig. 1 of the main
text.

pattern starts to morph from the dot state to the stripe state at T/T0 ≈ 1.012, while the backward transition does
not occur until T/T0 ≈ 1.024.

REFERENCES
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