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I. ANALYTICAL SOLUTION OF THE MODEL
A. Dynamical equations for deformation and composition

We start with the full free energy
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Membrane height field h(r) follows the Model A dynamics (not conserved) and volume fractions of molecules ¢y 2(7)
follow the Model B dynamics (conserved)
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The volume fraction of the last component ¢3 = 1 — ¢ — @2 is dependent on ¢, » by incompressibility. As mentioned
in the main text, we nondimensionalize all the parameters: space and time are measured in units of A and nkgT M /)2,
respectively, and energy is measured in units of nkgT. Hence, we set M = 1 and A = 1 in the following derivation.
The equations of motion are
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where ﬁg < are the chemical potentials due to the (generalized) Flory-Huggins free energy:
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B. Pattern size and morphology

Fourier transforming Eq. (S4) yields the steady-state solution for h:

h(k) = ¢1(k). (S9)
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Let 0¢; = ¢; — ¢;. The free energy for membrane deformation reduces to
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where A is the total area of the membrane.
Assuming phase separation along the tie lines of . (which can be determined by the convex hull construction [1]),
the ratio of the concentration change of the two phospholipid species: s = —d¢o /5.
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The expansion parameters are:
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Here, p is related to the line tension between the two phases. In the absence of membrane deformation (h = 0), phase
separation requires a > 0. Note that b > 0 ensures that d¢; remains bounded.

Combining Eq. (S12) and Eq. (S13) leads to the total free energy given by Eq. (7) of the main text (shifting the
zero of the free energy by oA to include the surface energy of the undeformed membrane):
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The first term gives the effective surface energy oeg = o + fo(¢1, o) + %/{C%g{)? [Eq. (8) of the main text]. Minimizing
the free energy with respect to |k| leads to k% = k2 = 4/ JTC% — 2 [Eq. (9) of the main text]. Expanding the free energy
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Thus, the dynamical equation for ¢ is

91 2 0F 2 G 212 2 3
= — J— 2
ot \4 5o, v Geff + oc? (k2 +V?)" |61 + c6pT + bi¢ |, (S20)
where
Qeff = G — 2 ,LLO'C% + % (821)
K

Eq. (S20) has the same form as the conserved (or derivative) Swift-Hohenberg equation [2-4]. Applying amplitude
expansion 6¢; = ¢1 — 1 =y Ape®n T 4 c.c. with |k, | = k. and n = 3 (i.e., the wavevectors kj 2 3 are of the same
magnitude and oriented at 120 degrees with respect to each other) leads to the amplitude equations:
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where 7 = k2t. Let A; = R; exp(if;). The dynamics of the amplitude R and phase 6 are given by
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The sum of phases © = 01 + 03 + 03 evolves following
de Rit1R;
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where cyc. represents cyclic summation over indices ¢ = 1,2,3. Thus, © has two fixed points © = 0 and © = 7.
However, only the one corresponding to cos ©® = —sgn(c) is stable. Substituting it to the amplitude equation for Ry
leads to
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The fixed points of this equation represents different patterns. To analyze the stability of the fixed points, we also
compute the Jacobian:
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This equation has three fixed points:
e Uniform state: Ry = Ry = R3 = 0. The fixed point is stable when aeg < 0.
e Stripe state: Ry = /% and Ry = R3 = 0. The Jacobian is

—2acf-f 0 0
J = 0 —aer  2lc|\/FE | . (S30)

0 2|c|\/% —Oof

The fixed point is stable when the eigenvalues have negative real parts, which requires
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e Dots (hexagonal) state: Ry = Ry = Rz = R, which is given by
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is always an unstable fixed point, while R, is stable when a.g < .

The solution exists when aeg > —

Combining the above results we find that the stability of the fixed points can be captured by a single control parameter
g = “Cffb =20 (a -2 W+ “‘7). The uniform state is stable when g < 0, the stripe state is stable when g > %,

and the dots state is btable when —1= < g < 38

C. Total free energy density

Here, we present the free energy density of the patterns, which is used in Fig. 3 of the main text. Following
Eq. (S18), the free energy density of the system is given by
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where fj is the free energy density of the uniform state, and (-) represents spatial averaging over the entire system.
For the stripe state, we have:
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For the dot state, we have:
(¢*) =6R* (¢°) = —12R%gn(c), (¢") = 90R". (S36)
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D. Validity of the tie line approximation

In order to justify expanding the free energy along the tie line, we plot the histogram of local composition
(¢1(1), Pp2(r)) and compare it with the tie line. Fig. S1 shows the histograms for the 4 steady-state patterns shown
in Fig. 1C of the main text. Indeed, the histograms are peaked around the tie line, which justifies fixing the ratio
s = —d¢2/dp1 to that of the tie line.

E. Using analytical i to predict characteristic domain size

In Fig. 2C,D of the main text, the characteristic domain size was captured with a single fitting parameter . This
parameter can also be estimated from Eq. (S14), which leads to slightly worse agreement (see Fig. S2).

II. DETAILS OF THE NUMERICAL SIMULATIONS

The dynamical equations Eq. (S4)—(S6) are solved in a L x L square domain with periodic boundary conditions.
Space is discretized into N x N grid points, and time is discretized to steps of A¢. Time integration is performed in
the Fourier space y(k) = [y (r) exp(—ik - r)d?r using an implicit-explicit scheme:

y (k) —y" (k)
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FIG. S1. The probability density function (PDF) of the local composition P(¢1,¢2) for the 4 steady-state patterns shown in
Fig. 1C of the main text (from left to right are the PDFs corresponding to the upper left, upper right, lower left, and lower
right panels of Fig. 1C). The white dashed lines are the tie lines obtained from the convex hull construction. For the last two
panels, the color bar is truncated at 500 to make the distribution visible.
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FIG. S2. The characteristic domain size as functions of (A) the bending modulus x and (B) surface tension o. The parameters
are the same as Fig. 2C,D of the main text, except for x which is estimated from Eq. (S14) rather than obtained by fitting.

where y = (h, ¢1,¢2)T and n labels the time steps. L(y) = A -y is the linear and implicit part of the equation and
N is the explicit part. They are converted back and forth between real space and Fourier space representations [5].

For this study, the implicit part is diagonal: L; = k?A;y;, with A = (0 + kk?, kel + 2x13A%k?, 2x23A%k?). All the
other terms in the equation are encompassed in the explicit part IN. Thus, the update rule reads:
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To improve the accuracy, we also perform m,,. predictor-corrector iterations for each time step:
n LN [y LI
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where j labels the predictor-corrector iterations with y;" O — y;' and yf“ =y, e

The typical parameters used in this work are L = 1000\, N = 512, At =1, my. = 3.

III. TEMPERATURE DEPENDENCE OF THE PATTERNS

Here, we assume that the material properties and the interaction energies do not vary strongly with temperature.
Thus, the temperature dependence predominantly enters through the entropy term. Since energy is measured in units
of nkpT, the rescaled parameters (7, %, x, &) scale with temperature with a factor of 1/(kpT). In the simulations,
we tune temperature by rescaling these parameters by a factor of %, where Tj is the reference temperature. Fig. S3
shows that the coarsening is arrested at a finite length scale (left), which decreases with temperature (right). Fig. S4
shows the hysteresis of the pattern morphology with respect to temperature. As the temperature is decreased, the
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FIG. S3. (A) The time evolution of the characteristic domain size for different temperatures T. Mean composition: (¢1, ¢2) =
(0.38,0.36). All the other parameters are the same as in Fig. 1 of the main text. (B) The characteristic domain size at long

times as a function of the temperature 7. Both time and length are non-dimensionalized as described in the main text. Tp is
the reference temperature used in the non-dimensionalization.
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FIG. S4. Pattern hysteresis with respect to temperature. The temperature is first decreased and then increased according to

the black arrow. Mean composition: (¢1,¢2) = (0.45,0.40). All the other parameters are the same as in Fig. 1 of the main
text.

pattern starts to morph from the dot state to the stripe state at 7'/Ty &~ 1.012, while the backward transition does
not occur until 7'/T, ~ 1.024.
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