Supplementary Material: Target Search of a Polymer with an Active Head

Rajiblochan Sahoo, Arvind Saini, and Rajarshi Chakrabarti*

Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India E-mail: rajarshi@chem.iitb.ac.in

Figures

Fig. S1. (a) Plots of $\left\langle \overline{\delta r_{\text{COM}}^2(\tau)} \right\rangle vs \tau$ of the polymer at different Pe. (b) Plots of $\alpha_{\text{COM}}(\tau) vs \tau$ of the polymer at different Pe.

Fig. S2. Plots (a–c) represent displacement distribution functions $P(\Delta x; \tau)$ of an active head monomer of the polymer at different lag times $\tau = 250, 500, 1000$.

Fig. S3. The radial probability density function P(r) of the head, tail, and center of mass (COM) of the passive polymer.

Movies

The movies illustrate the qualitative difference in the dynamics and search process of the passive and active head monomer of the polymer inside spherical confinement.

- 1. Movie S1: Molecular dynamics simulation of the passive polymer inside a spherical confinement. The passive polymer diffuses slowly and is unable to find the pore.
- 2. Movie S2: Molecular dynamics simulation of the polymer with an active head inside a spherical confinement. The active head monomer moves toward the boundary, finds the pore, and escapes through it.
- 3. Movie S3: Molecular dynamics simulation of an active Brownian particle (ABP) inside a spherical confinement. The ABP shows random motion and moves toward the boundary, finds the pore, and escapes through it.