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A Experimental Methods

A.1 Preparation of the wedge, polymeric coating and plasma
treatment

The key challenge in the preparation of the experiment is ensur-
ing that any types of perturbations to the droplet spreading are
minimized. The typical main source of perturbation is contact-
line pinning, which may arise from either chemical or mechan-
ical heterogeneities in the solid surface of the plates. To re-
duce contact-line pinning, we applied a hydrophilic polymeric
coating to the inner surfaces of the plates, followed by low-
pressure plasma treatment. The coating was created using the
two-part PDMS (Polydimethylsiloxane) Dow SYLGARD 184, a sil-
icone elastomer widely used in microfluidics. The PDMS con-
sists of a base and a curing agent, but because it is naturally
hydrophobic, we added a third component, a methyl-terminated
poly(dimethylsiloxane-b-ethylene oxide) from Polysciences Inc.,
to act as a hydrophilic agent. We targeted weight ratios of
10:1:0.2 for the base, curing agent, and hydrophilic agent, respec-
tively, with the hydrophilic agent incorporated while the silicone
was still fluid, before curing. The mixture was stirred vigorously
for several minutes, then placed in a vacuum chamber to elimi-
nate air bubbles introduced during stirring.

While the coating solution was degassing, we prepared the
glass plates by positioning them side by side along their longest
edge (76mm). We connected the plates with a strip of Scotch
tape acting as a hinge along the edge (see Fig. 1d). Care was
taken to avoid trapping air bubbles, especially along the central
edge where the droplet spreading occurs.

Next, we used a Laurell WS-650-23B spin coater to apply the
coating solution to the glass slides. We added the degassed PDMS
solution to the central part of the plates and spun them at 3000
RPM for 2 minutes, following a brief fast acceleration phase. The
spinning was repeated once again to ensure a homogeneous thin
layer of the modified PDMS solution. The sample was weighed
before and after coating, revealing that approximately 0.09g of
PDMS had been deposited, corresponding to a layer thickness of
about 0.05mm. For reference, the thickness of the Scotch tape
beneath the PDMS was estimated at 0.03mm, and the glass plates
themselves were 1.0mm thick.

After coating, the sample was cured in an oven at 100◦C for
1 hour. Once the PDMS was fully cured, we proceeded with the
nitrogen plasma treatment. We used a low-pressure plasma sys-
tem from Diener Electronic for this step. The sample was placed
in a sealed plasma chamber, and a vacuum pump reduced the air
pressure to 0.15mbar. A steady nitrogen flow was established to

create a nitrogen-rich environment at 0.3mbar. Plasma was then
activated and maintained at 60% power for 3 minutes.

This plasma treatment was crucial for achieving hydrophilic-
ity, as the hydrophilic agent alone was insufficient. PDMS is
inherently hydrophobic, with a water-air contact angle around
Θ = 120◦ 49. Before plasma treatment, we measured a contact an-
gle of Θ = 75◦, using a droplet of xanthan gum solution (2g/L in
water). After plasma treatment, the contact angle decreased to
approximately Θ = 20◦.

A.2 Preparation of the fluids

The power-law fluids were prepared by mixing different concen-
trations of xanthan gum in water using a magnetic stirrer. As
noted by Whitcomb50, adding just 1% xanthan gum to water can
enhance its viscosity up to 100 000 times at low shear rates, but
this increase was limited to only 10 times at high shear rates. We
started the procedure by adding 250g of deionized water in a con-
tainer that was placed in a magnetic stirrer at a rate high enough
to form a visible vortex. The XG was gradually poured onto the
side walls of the generated vortex in order to avoid the formation
of large clumps. After 1h, we added 0.25g of Nigrosin, a strong
dark blue water-soluble dye. We also prepared a reference New-
tonian fluid by simply mixing glycerol and water, 50% by weight
of each part.

After mixing, microscopic air bubbles were inevitably trapped
in the fluids, potentially affecting their rheology. To address this,
the fluids were placed in a vacuum chamber for degassing.

A.3 Rheological measurements using a commercial rheome-
ter

The rheology of all fluids was characterized using an Anton Paar
rheometer model MCR 702e. The results for the effective viscos-
ity µ as a function of the shear rate γ̇ are shown in Fig. SM1. We
conducted tests in which the shear rate γ̇ was gradually increased
from γ̇min = 0.01s−1 to γ̇max = 100s−1 for XG fluids with concen-
trations between 1 and 6g/L; from γ̇min = 0.1s−1 to γ̇max = 100s−1

for the XG fluid at 0.5g/L; and from γ̇min = 1s−1 to γ̇max = 100s−1

for the Newtonian glycerol–water mixture. The higher minimum
shear rates used for the two least viscous fluids were necessary
because the torque at low shear rates was too small to be reli-
ably measured by the rheometer. Note that all fluids present a
power-law regime behavior of the form µ ∝ γ̇(n−1) for high values
of the shear rate γ̇ (shown as solid lines in the figure). The flu-
ids became more shear-thinning for higher concentrations of XG,
see the concentration and exponent values in the legend. The
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Fig. SM1 Viscosity curve from the Anton Paar MCR 702e rheometer for
the different power-law fluids. The reference Newtonian glycerol-water
mixture is also shown. The region used to extract the power-law exponent
n−1 corresponds to the solid lines. The shear rate γ̇c, above which the
power-lar rheology is observed, is marked by black arrows.

power-law regime is only observed beyond some threshold value
γ̇c, which depends on the concentration of XG and is indicated by
the black arrows. Increasing the XG concentration causes γ̇c to
decrease. When γ̇ < γ̇c, the fluids are in a crossover region and
for very small shear rates the fluids present a Newtonian behavior
with a constant viscosity. Measurements at extremely high shear
rates were not performed, however, at such rates, the viscosity of
xanthan gum solutions tends to approach that of water17. This
crossover regime is well documented13 and was captured in more
complex models for the viscosity curve, such as that by Carreau42.

The µ0 values that may be read from Fig. SM1 at γ̇0 = 10s−1 are
roughly within a factor 2 of the values obtained from Eq. (19),
using the static contact angle. However, if this value is replaced
by a dynamic contact angle Θdyn, agreement between the val-
ues obtained from Fig. SM1 and the prediction of Eq. (19) may
be acheived, using Θdyn ≈ π/3 as a fitting parameter. This value
agrees well with the Θdyn ≈ 65◦ obtained by Wijnhorst et al.40 for
Newtonian fluids spreading in an α = π/2 wedge. This strongly
suggests that, while the theoretical exponent n obtained from the
measured τ-values is robust in the sense that it does not depend
much on the idealizations made in the theory, the prefactor µ0

does.

In Fig. SM1, we also notice that for the samples presenting the
lower values of the effective viscosity, the data begins to fluctuate
and becomes unreliable for very low shear rates. We believe this
happens because in this zone, the torque imposed by the fluid on
the rheometer plates is too small to be reliably measured. This is
clearly observed in the curves for XG at 1g/L, where fluctuations
appear below γ̇ = 0.04s−1; for XG at 0.5g/L, where fluctuations
begin below γ̇ = 0.3s−1; and for the Newtonian case, where they
start around γ̇ = 3s−1. In this study, we restrict our analysis to the
portion of each curve that lies within the power-law regime.

A.4 Droplet placement and effects from films on the plates

A micrometer syringe with a flat-tipped needle is used to deposit a
droplet of the specified liquid at the wedge’s center. The external
diameter of the needle is 1.80mm and the droplet volume (set
on the syringe) is approximately 20 µL. The micrometric needle
is positioned in an arm connected to a translation stage which
allowed for x, y and z translation to position the droplet in the
wedge. The procedure of placing one droplet consisted in first
generating the pendant droplet on the needle and then slowly
moving the translation stage down until the droplet touched the
inner sides of the plates. It would then disconnect from the needle
and start spreading sideways, see Fig. 1. Notice that once the
droplet touches the glass plates, it creates a wetted region close
to the center, which persists as the experiment progresses. This
can be seen on Fig. 1c) as the darker patch just below the tip of
the needle in the central part of the image. The presence of this
film can cause the droplet shape for small x values (close to the
center) to deviate from the theoretically predicted shapes, where
this artifact was not present. The lateral extent of this region is of
the order of 0.3cm in both directions, so in our analysis we have
ignored the initial frames of the dynamics, in which the droplet
spreading may be more affected by these films.

A.5 Experiments with highly wetting silicone oils using a
simpler wedge construction

For highly wetting liquids, such as silicone oils, contact-line pin-
ning is naturally reduced, and a simpler setup with only the
glass wedge without any polymeric coating or plasma treatment
is sufficient. As a first step in the development of our technique,
we performed experiments with this simpler wedge construction
using silicone oils with kinematic viscosities 50cSt, 100cSt, and
350cSt. In Fig. SM2a) we show snapshots of the experiment with
the 100 cSt silicone oil. The transparent silicon oil appears red
because of a convenient lensing effect: A red tape is positioned
behind the wedge and the contrast in refracting indices causes
the droplet to refract the red light into the camera, thus avoiding
the need for dyes. The interval between the first and last snap-
shots was ∆t = 10s. The spreading dynamics is seen in Fig. SM2b)
where we see that all exponents show values τ = 0.43±0.03, ob-
tained from the black guide-to-the-eye line. These findings are
consistent with the fact that silicone oil is a Newtonian fluid with
a theoretical value τ = 0.4, which results from setting n = 1 in
Eq. (14). In this experiment, the wedge had an opening angle
of α = 20◦, and the droplet was positioned by hand instead of
employing the more precise arrangement with a micrometric sy-
ringe. Images were recorded with a DSLR camera in video mode.
Notice that, even though the fluids are significantly different, with
viscosities varying by a factor of 7, the exponent is rather stable.
The specific value of the viscosity, as well as the opening angle
α, enters in the prefactor governing the scaling through the ‘dif-
fusion coefficient’ D0 in Eq. (9) but do not affect the exponent
τ.
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Fig. SM2 a) Snapshots showing the evolution of a droplet of highly wet-
ting silicone oil with a viscosity 100 cSt in the wedge composed only of
two glass slides. The interval between the top and bottom snapshots is
∆t = 10s. b) The spreading dynamics of three silicone oils with viscosities
50cSt, 100cSt, and 350cSt show similar exponents τ = 0.43±0.03, (black
line), consistent with the theoretical value τ = 0.4 predicted for a New-
tonian fluid. The data is shifted horizontally by different values to aid
visualization.

A.6 Estimation of cross-sectional area of droplet from exper-
imental height profile

In the experiments the cross-sectional area A(x, t) is affected by
the curvature of the edge as shown schematically in Fig. 1d). If
we ignore this effect, the computed volume of the droplet differs
from the known value V0, which is injected by the needle. The
effective height h measured experimentally is the vertical distance
from the top of the liquid-air interface and the curved segment in
Fig. 1d), which itself is at a distance ≈ h0 from the extrapolated,
sharp edge of the wedge. We can then estimate A(x, t) as the
difference between the area of the triangular wedge (ideal case
with sharp corner) and the void space under the curved segment
seen in Fig. 1d). From a simple geometrical argument we get

A ≈ (h+h0)
2 tan

(
α

2

)
−h2

0 tan
(

α

2

)
= (h2+2hh0) tan

(
α

2

)
. (SM1)

The vertically projected effective height h is what is shown in
Fig. 3a). Notice that this is slightly different from h seen in Fig. 1
but can be obtained from the latter as hcos(α/2)−h0.
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Fig. SM3 The film height as a function of position along the corner at
different times when the rheological exponent n = 0.48. The black lines
derive from the numerical solutions of Eq. (8) using h(x, t) =

√
2A(x, t)/α,

while the colored lines show the corresponding analytical solution of
Eq. (10) and Eq. (17) for two different times. The taller central curve
shows the initial profile of the droplet. A volume of 19mm3, initial half-
width w0 = 0.8mm, and corner radius of h0 = 0.6mm were used as param-
eters for all curves.

B Numerical model

In Fig. SM3 the droplet height h(x, t) =
√

2A(x, t)/α is plotted as
a function of position, where we have taken the normalization to
be

∫
dxA(x, t) = 19mm3, approximating the experimental value.

Note that the analytic solution (red and green curves for times
given in the legend) has a cusp at x = 0 where the second spatial
derivative of h(x, t) diverges, while the numerical solution is ini-
tialized with the smooth Gaussian ∝ exp(−x2/w2

0) (shown as the
taller curve). Nevertheless, the numerical solution converges to
the analytical solution (red curve) with the same droplet volume
within 1‰ during the first 1/10 of the time span, except at the
cut-off point h ≈ h0, where a weak numerical oscillation around
the analytic solutions causes deviations of the order 1%. This
shows that the numerical solution quickly converges to the ana-
lytical shape prediction, except for the values where h is below the
h0-cutoff. Figure SM4 shows that xtip(t), when h0 = 0.6mm and
w = 0.8mm, is well approximated by a power law, that is, that it
yields straight lines on a log-log plot. In Fig. SM5 the slopes of
these plots are given, showing the variation of τc with the corner
curvature h0. Note that they extrapolate well to the analytic value
given by the red dot. The deviation from the theoretical τ value
decreases with decreasing h0, as expected.

C Replacement of Darcy’s law for a power-law fluid
We need the relationship between the pressure gradient and the
average flow velocity of a power-law fluid, where the viscous
stress scales as γ̇n, where γ̇ is the shear rate, and n is the rheo-
logical exponent, which for a shear-thinning fluid is smaller than
unity. When n = 1 the fluid is Newtonian. Just as the viscous
stress in a Newtonian fluid, the non-Newtonian fluid stress tensor
can only depend on the symmetric part of the velocity gradient.
For an incompressible fluid the total stress tensor, which includes
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Fig. SM4 The position of the right droplet tip as a function of time
for n-values in the range 0.25− 1.0 (black curves). The red curve is a
linear fit to the black n = 0.25 curve, which it nearly covers. All other
parameters are as in Fig. SM3.
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Fig. SM5 The measured slopes τc derived from the numerical solution
of Eq. (8) versus the radius of curvature of the corner h0. Here n = 0.48
and the red dot shows the theoretical value given in Eq. (14).

the pressure P, may be cast in the covariant form,

σtot i j =−δi jP+η0γ̇i j(γ̇kl γ̇kl)
(n−1)/2 , (SM2)

where P is the pressure, δi j the Kronecker delta function, and
summation over repeated indices is implied. The viscosity coef-
ficient (in units of Pasn) may be decomposed into η0 = µ0γ̇

1−n
0 ,

where µ0 (in units of Pas) is the viscosity at the shear rate γ̇0. The
strain rate tensor is given by

γ̇i j =
∂ui

∂x j
+

∂u j

∂xi
, (SM3)

and the stress balance equation reads

∇ ·σtot = 0 . (SM4)

When n = 1, this equation reduces to the Stokes equation.

Introducing a characteristic length h, which could be the chan-
nel width, this equation may be written in terms of the non-

dimensional primed quantities defined through

xi = hx′i

ui = γ̇0hu′i

γ̇i j = γ̇0γ̇
′
i j

∇ =
1
h

∇
′ . (SM5)

Writing the pressure gradient as

∇P =−|∂P/∂x|e , (SM6)

where e is the unit vector in the opposite direction of the pressure
gradient, Eq. (SM4) may be written as

e =−∇
′ ·
(

˙̃γ
(

˙̃γ2
)(n−1)/2

)
, (SM7)

where γ̃ = γ ′/G1/n and we have introduced the dimensionless ra-
tio between pressure forces and viscous forces, and

G =
|∂P/∂x|h

µ0γ̇0
(SM8)

which is thus a non-dimensionalized pressure gradient. Since the
boundary conditions may be given in terms of u′(x′B) where xB

are boundary coordinates, the stress balance equation yields a
solution of the form

γ̃i j = fi j(x′) , (SM9)

which in turn gives

γ
′
i j = fi j(x′)G1/n ∼

∂u′i
∂x′j

. (SM10)

Integrating this equation for the velocity component along the
wedge gives

u′ = G1/nFn(x′) , (SM11)

for some other dimensionless function Fn, which in turn gives

u = G1/n
γ̇0hFn(x′) . (SM12)

Averaging over a cross section of the flow gives

u = G1/n
γ̇0hQn =

(
|∂P/∂x|

η0

)1/n
h1+1/nQn . (SM13)

It is possible to calculate Qn in the lubrication approximation,
assuming that the flow is governed by the gradients of u in the
angular direction (normal to the wedge walls) alone.

We shall start with the velocity field u(x) in the z-direction in a
straight channel of half-width a and a coordinate x in the direction
transverse to the flow where x = 0 in the middle. The velocity
satisfies the boundary condition u(±a) = 0. Then, Eq. (SM4)
reduces to

2
1−n

2
|∂P/∂x|

η0
−∂x((−∂xu)n) = 0 (SM14)
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for x > 0. This equation is easily integrated to yield

u(x) = 2
1−n
2n

n
n+1

(
|∂P/∂x|

η0

)1/n
(a

n+1
n − x

n+1
n ) , (SM15)

which has the cross-sectional average,

u =
1
a

∫ a

0
dxu(x) = 2

1−n
2n

n
2n+1

(
|∂P/∂x|

η0

)1/n
a

n+1
n . (SM16)

This expression agrees with Darcy’s law in a channel of half-width
h in the Newtonian n = 1 case where u = h2|∂P/∂x|/(3η0).

Now, we return to the wedge geometry. Neglecting the effects
of transverse flow on the pressure, the pressure gradient points in
the x-direction and is constant over any fixed x plane inside the
fluid. For a narrow wedge we may therefore approximate the flow
as a superposition of channel flows with half-widths αr/2. This
approximation is limited to small α- values as it assumes that
the velocity variations are dominantly in the angular direction
and negligible in the radial direction. So, we replace a → αr/2,
thereby obtaining a lubrication approximation u(r) to the flow at
a distance r to the corner. Averaging u(r) over the cross-sectional
area

⟨u⟩= 2
h2

∫ h

0
drru(r) (SM17)

yields the volume flux

q =
αh2

2
⟨u⟩= Qn

(
|∂P/∂x|

η0

)1/n
h3+1/n , (SM18)

where

Qn =
2

1+n
2n n2

(2n+1)(3n+1)

(
α

2

) 2n+1
n

, (SM19)

which is the desired result.
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