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Figure 1: Chemical structure of the various phospholipids used to fabricate the Janus
GUVs a, DOPC, b, DPPC, c, cholesterol, d, RhPE and e, NBDPE.
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25 m

Figure 2: Fabrication and characterization of Janus GUVs a, Scheme of the electroformation
process where the dried layers of the lipid mixture are hydrated in water and 25 mM Sucrose at
60◦ C in between two electrodes while applying an AC electric field. b, Upon cooling to 25◦ C,
spontaneous phase separation arises leading to liquid-liquid phase-separated GUVs with two
lipid domains (red and green). c, Population distribution of the various geometries obtained. d,
Size distribution of the spherical Janus GUVs, and asymmetry (inset) distribution as the ratio of
the liquid-disordered (Ld, red) and the liquid-ordered (Lo, green) phases obtained from electro-
formation. e, Fluorescent microscopy picture of a typical sample of Janus GUVs. The scale bar
depicts 25 𝜇m.
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dt [s]
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Figure 3: Passive dynamics of spherical Janus GUVS a, Values of 𝛾 as a function of size,
obtained by fitting the slope of MSD curves of passive vesicles in a log-log plot. b, Log-log
plot of MSD curves of passive vesicles (0 kHz, 0 Vpp) used to fit the exponent 𝛾 . c, Experi-
mental (grey points) and theoretical (black line) translational diffusion coefficients DT as a func-
tion of vesicle size. The purple squares represent the average over three points with error bars.
The experimental points were obtained by fitting to the MSD curves of passive vesicles, where
MSD(t) = 4DTt𝛾 , being 𝛾 ≈ 1 in the diffusive regime, and the theoretical curve was calculated
using the Stokes-Einstein relation DT = kBT

6𝜋𝜂r
. d, MSD curves of passive vesicles (0 kHz, 0 Vpp),

in a linear plot, used to determine the experimental diffusion coefficient DT.
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Figure 4: Behavior of GUVs in parallel electrodes Confocal images of the phase-separated
GUVs, a, without AC field, b, at 40 kHz and 10 Vpp, and c, at 10 kHz and 10 Vpp. The shaded
area indicates the position of the electrode. The x, y and z axes are in 𝜇m.
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Figure 5: Effect of the AC fields on membrane deformation Fluorescence images taken at
the equator of the GUV before and after application of an AC field at a, 10 kHz and c, 30
kHz and 7 Vpp showing the effective deformation of the vesicles. The scale bars depict 5 𝜇m.
Confocal microscopy data of the ratio h∕D of height h and diameter D of different populations
of non-phase separated vesicles as a function of applied voltage at b, 10 kHz and d, 30 kHz with
errorbars showing the standard deviation. Top and side views of e, 35:10 DOPC/chol + 0.2%
RhPE + 1% NBDPE and f, 35:20 DPPC/chol + 1% NBDPE before and after applying an AC
field of 10 kHz and 8 Vpp. The scale bars depict 10 𝜇m.
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Figure 6: Electrohydrodynamic flow behaviour on the surface of a membrane a, PIV of
tracers trajectories around each hemisphere. The color code gradient indicates the tracer velocity
for the Lo (green) and Ld (red) from high to low velocities. The scale bar depicts 10 𝜇𝑚. b,
Experimental velocity of the tracers vtracer for the Lo (green) and Ld (red) phases as a function
of the distance between the GUV and the tracer d. The solid line represents a decay of 1

d
. The

error bars are the standard deviation over more than 50 tracers.
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Figure 7: Theoretical estimation of the EHD flows behavior Schemes of models used for
estimating the EHD flows considering a a, hard colloidal particle and d, protoplast model (thin
shell where the 𝜎in = 𝜎out). The arrows represent the direction and magnitude of each lipid
phase. Estimated EHD flows from Eq.S6 using the hard colloidal particle model with the fitting
parameters 𝛽1 = 0.2 (Lo) and 𝛽2 = 0.15 (Ld) for GUVs of the two GUV lipid phases Lo (ULo)and Ld (ULd) as a function of b, frequency estimated at 1 𝜇m from surface of the GUV, and c,
at a fixed frequency of 10 kHz as a function of the particle distance. Estimated flow velocity
Ui using Eq.S6 and including the complex polarizability K∗ using the protoplast model, for
membrane capacitance Cm of 0.001 (gray) and 0.01 (red) Fm−1 as reference values from typical
experimental measurements reported in literature f, as a function of the frequency at a distance
of the membrane of the GUV and g, at fixed frequency and voltage (10 kHz, 9 Vpp) at varying
distance from the membrane surface.
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Figure 8: Dynamical state diagrams of control experiments with non-phase separated vesi-
cles a, 100% DOPC b, 90% DOPC + 10% cholesterol c, 80% DOPC + 20% cholesterol d, 100%
DPPC e, 80% DPPC + 20% cholesterol f, 70 % DPPC + 30 % cholesterol. All DOPC control
samples contained 0.1 % RhPE and all DPPC control samples contained 1% NBDPE. Legend:
∗ breaking of vesicles; ◦ no active motion of vesicles

9



a b

Figure 9: Dynamical state diagrams of control experiments with phase-separated vesicles
a, Control experiment with 10−6 M NaCl in the surrounding solution. b, Control experiment with
doubled fluorophore content (0.2% RhPE and 2% NBDPE). Legend: ∗ breaking of vesicles; ◦
active motion of vesicles ◦ no active motion of vesicles
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Figure 10: Analysis of a trajectory depicting run and tumble events at 10 kHz and 9 Vpp a,
Snapshots of some identified tumble events. Evolution as a function of time of b, instantaneous
velocity v, c, variation of Janus vesicle orientation Δ𝜃 in between two frames, d, domain order
parameter Sp. e, Dependence of the Sp parameter as a function of normalized velocity (left) and
Δ𝜃 (right). f, Fluorescence image using green and red channels overlapping with Janus GUV
trajectory, indicating example tumbles from a. Examples of domain structure for g, run and h,
tumble events. The scale bar depicts 8 𝜇m.
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Figure 11: Uptake, transport and cargo release using active Janus GUVs a, Fluorescence
image in BW representing the Ld phase of a GUV, containing a smaller GUV. The pink and
blue lines represent the trajectory of the small inner and big outer GUVs, respectively. The inset
represents the confocal image of the green and red channels. The scale bar depicts 10 𝜇m. b,
Velocity as a function of time for the inner and outer GUVs. The inset represents a schematic
representation of the system. 𝐜𝐢, 𝐜𝐢𝐢, 𝐜𝐢𝐢𝐢, Time sequence of on-demand cargo release by bursting
the vesicles upon decreasing the frequency to 5 kHz. The scale bar depicts 10 𝜇m. d, Bright
field microscopy images of an active Janus vesicle in different stages of swimming, engulfing
and transporting a 2 𝜇m PS particle at 10 kHz and 9 Vpp. The scale bar depicts 20 𝜇m. The inset
shows the fluorescent image of the same Janus GUV. The scale bar depicts 5 𝜇m.
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Calculation of particles electric properties under AC fields

The time scales (𝜏c) of the particle double layer polarization under the effect of an AC elec-
tric field have been extensively studied by Squires, Bazant, Ristenpart and Delgado in previous
works1–3. These time scales can be extracted from the following expressions,

𝜏𝑐 =
𝜅−1𝑅
𝐷𝑖𝑜𝑛𝑠

(1)

where 𝜎m = 1.5 × 10−5 Sm−1, the Debye length is estimated as 𝜅−1 =
√

𝜖m𝜖0D
𝜎m

, thus
𝜅−1 ≈ 300 nm (consistent with solutions in the absence of added ions) as 𝜖m = 78 (MilliQ at
25◦ C), 𝜖0 = 8.854 × 10−12Fm−1, D = 2 × 10−9m2s−1 considering a general value for ions
in the media to be able to do the calculation. With this value of 𝜅−1, we have calculated the
new value for the characteristic time for the formation of an induced screening cloud around a
particle of radius R = 5 𝜇m, where 𝜏c = 700 𝜇s. In our experiments, we primarily use MilliQ
water with low conductivity and 25 mM sucrose (𝜎m = 1.5 × 10−5 Sm−1). We also carry out
control experiments in 10−6 M of NaCl.

For the calculation of the particle conductivity of each phospholipid bilayer phase, we con-
sider a dielectric shell with 𝜖p = 10 on average, in reality having a contrast in dielectric constant
between the hydrophobic tail and hydrophilic head4. The estimation of 𝜎p for the phospholipid
bilayer surface was assumed to be analogue to a dielectric surface, in which5:

𝜎p = 𝜎b +
2𝐾s

𝑟
(2)

where 𝜎b is the bulk conductivity (in Sm−1), where for dielectric particles 𝜎b ≈ 06,7. For the vesi-
cles we considered the bulk conductivity to be the media conductivity 𝜎m = 1.5 × 10−5 Sm−1,
as they are filled with 25 mM sucrose solution. This approximation can be used as the charging
time of the membrane - acting as a capacitor - 𝜏c,m is orders of magnitude slower than the applied
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frequency 𝜏c >> 𝜏f , as shown in Table S1 and where 𝜏f is the inverse of the applied frequency.
𝐾s is the surface conductance (in S) of the particle, and r is the particle radius. The value of 𝐾s

can be approximated as

𝐾s =
2𝜎m
𝜅

[

𝐷+

𝐷+ +𝐷−

(

𝑒−
𝑧𝜁p𝑒
2𝑘B𝑇 − 1

)

(1 + 3𝑚+) + 𝐷−

𝐷+ +𝐷−

(

𝑒+
𝑧𝜁p𝑒
2𝑘B𝑇 − 1

)

(1 + 3𝑚−)
]

(3)

where 𝜎m is the medium conductivity, 𝑒 the electron charge, 𝑧 the valence of the ions, and 𝜁p is
the zeta-potential of the particle (𝜁LO = −45mV, and 𝜁LD = −33mV). The parameters 𝑚± are
given as8

𝑚± =
2𝜖m𝜖0
3𝜂𝐷±

(

𝑘B𝑇
𝑧𝑒

)2

(4)

which describe the contribution of electro-osmotic ion flux to 𝐾s, where 𝜂 is the viscosity of
the fluid. We, therefore, estimate the magnitude of the surface conductivity of each Janus
GUV hemisphere composed of a different lipid type. At this sucrose concentration, the propul-
sion behavior of the Janus GUVs is the same as in the experiments with only MilliQ water
(𝜎m ≈ 5 × 10−5 Sm−1).

The complex polaribilizability K∗, or Classius Mossoti factor for the vesicles was calculated
using the expression for a solid colloidal particle (considering the surface conductivity calcu-
lated as explained before), as K∗ = (𝜖∗p − 𝜖∗m)∕(𝜖

∗
p + 2𝜖∗m)

8 (where 𝜖∗𝑝 and 𝜖∗𝑚 are the complex
permittivities of the particle and the medium, respectively. Moreover, we use the dielectric pro-
toplast model with a very thin bilipid layer where the external and internal solutions have the
same 𝜖 and 𝜎, and [K(𝜔)] can be simplified as [K(𝜔)] ≈ CmR−𝜖m

CmR+2𝜖m
9,10.
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Since the membrane acts as a capacitor, we calculate the membrane charging time as10

𝜏c,m = RCm

(

1
𝜎in

+ 1
2𝜎out

)

(5)

where R is the radius of the vesicle, Cm the membrane capacitance, and 𝜎in and 𝜎out the inner and
outer solution conductivities. We have calculated the charging time scales of our system using
the experimental and three different values for Cm covering the reported regimes in literature, to
evaluate if charging effects are to be considered at the working frequencies where we observe
active motion (𝜏f = 10−30 𝜇s). We used 𝜎in = 𝜎out = 1.5 × 10−5 Sm−1. The results are shown
in Table I below.

Table 1: Calculation of membrane charging times as a function of the membrane capacitance
Cm.

Cm [Fm−1] 𝜏c,m [ms]
0.001 0.5
0.01 5
0.1 50

Based on these timescales, and the frequency applied during active motion (10 kHz), the
membrane charging effects are negligible in this frequency regime.

Estimation of EHD with colloidal electrokinetic model

The theoretical prediction of the EHDFs generated by a single sphere under an applied AC
voltageVppe−j𝜔t has been studied and derived by N. Wu et al. in previous works11 (the expression
has been corrected from the original article, information shared with the authors via private
communication). The EHDFs depend on D (the diffusion coefficient of the ions in the liquid),
𝜅−1 (the Debye length) and H (half the separation between the electrodes, 60 𝜇m in our case).
Therefore, the velocity of the EHDF Ui around a single particle of radius Ri at a given reference
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distance ri at which the EHD is evaluated, within 2 electrodes separated by a distance 2H, can
be calculated using

𝑈𝑖 = 𝛽𝐶
𝜂
𝐾 ′ +𝐾 ′′𝜔̄
1 + 𝜔̄2

3(𝑟𝑖∕𝑅𝑖)

2
[

1 + (𝑟𝑖∕𝑅𝑖)2
]5∕2

, 𝐶 = 𝜖𝜖0𝐻
( 𝑉pp

2𝐻

)2

(6)

where 𝜂 is the solvent viscosity and 𝜔̄ = 𝜔H∕𝜅D with frequency 𝜔, 𝜅 being the inverse
Debye length and D the ion diffusivity in the solvent11. Here, 𝛽 is a constant prefactor used as
a single fitting parameter to obtain the experimental velocities, 𝜖 is the solvent relative permit-
tivity, 𝜖0 is the vacuum permittivity. K′

i and K′′
i are the real and imaginary part of the particle’s

Clausius-Mossotti factor K∗
i , K∗ = K′ + iK′′ 5. They play a key role in calculating Ui, as they

determine the sign of the EHDF. The Clausius-Mossotti factor is often used to describe the po-
larizability of a particle suspended in a fluid. It dictates the magnitude and sign of the induced
dipole moment, and therefore also the distortion of the fluid flows of charged particles under an
AC electric field5,12.

Thus, the magnitude and direction of the EHD flows (Ui) depend mainly on the contrast be-
tween the complex polarizability of the particles relative to the surrounding medium asUi ∝ K′

i+

K′′
i . As previously mentioned, the Clausius Mossotti factor depends on the dielectric properties

of the particles as K∗ = (𝜖∗p −𝜖∗m)∕(𝜖
∗
p +2𝜖∗m)

8, where 𝜖∗p and 𝜖∗m are the complex permittivities of
the particle and the medium, respectively. 𝜖∗p can be written as 𝜖∗p = 𝜖0(𝜖′p−j𝜖′′p ) = 𝜖0𝜖′p−j𝜎′

p𝜔
−1,

were 𝜖′𝑝 and 𝜎′
𝑝 are the real parts of the particle permittivity and conductivity, respectively, and

j =
√

−1. This system is sensitive to contrast in medium and particle surface conductivities,
determining the final EHD flows. Finally, to evaluate the EHD flows around each lipid phase at
various distances, we consider an initial ri as the distance from the centre of GUV and we vary
the distance from the particle.

We also tested the protoplast model to calculate K∗ (fig.S7), considering a very thin bilipid
layer where the external and internal solutions have the same 𝜖 and 𝜎 and [K(𝜔)] can be sim-
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plified as10 [K(𝜔)] ≈ CmR−𝜖m
CmR+2𝜖m

, where Cm is the membrane effective capacitance, and R is the
radius of the vesicle. This model is sensitive to membrane capacitance, defining the magnitude
and direction of the EHD flow. While here we do not have direct access to Cm,green, based on the
calculated results we might argue that Cm,green needs to be smaller than Cm,red for the magnitude
of the EHD flow around the green to be dominant (motion towards the red side).

Detection of run-and-tumble events and analysis

We detect the running and tumbling events that occur in a trajectory using two criteria, namely
that tumbles exhibit large decreases in velocity as well as large changes in the orientation angle.
This approach was adapted from previous works by Najafi et al13 and Seyrich et al14. We cal-
culate the instantaneous velocity at each step of the trajectories that were previously determined
via particle tracking algorithms and then smoothed using the smooth function in Matlab to re-
duce noise. Subsequently, we determine the time tmin of the local velocity minima v(tmin) and
the depth of these local minima as

Δ𝑣 = 𝑣(𝑡𝑚𝑎𝑥) − 𝑣(𝑡𝑚𝑖𝑛) (7)

where tmax is the local velocity maximum closest to v(tmin). If Δv is larger than a threshold
value, in this case, 70% of v(tmin), being Δv ≥ 0.7v(tmin), then the minimum is counted as a
potential tumble. We determine the width of the minima in order to detect the length of the
tumble. For this, we use

0.3Δv + v(tmin) ≥ v(t) (8)

where the difference in velocities at the minimum tmin and the velocity at time t adjacent
to the minimum should not be larger than 30% of Δv in order to be part of the tumble. If t is
counted as part of the tumble, the next point t + 1 is evaluated until equation 8 is not fulfilled
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anymore. We choose and tune the threshold values empirically by comparing the results of the
run-and-tumble analysis to videos of some of the vesicles.

For the second criterion, we consider the change in orientation angle Δ𝜃 at each step of the
trajectory. As the difference between the angles does not exhibit the same drops as the velocity
does and thus it was not possible to find a universal threshold value without receiving many
false positives, we use a different approach to determine potential tumbles. We consider the
distribution of Δ𝜃 which exhibits a narrow high peak containing the small orientation changes
of the runs and large tails which represent the large orientation changes of the tumbles. We
separate them into two separate Gaussian distributions using the Matlab function fitgmdist. The
distribution obtained from the tails contains the local maxima of the change in orientation angles
Δ𝜃(tmax) and we consider these points of the trajectories as potential tumbles as well. The length
of these tumbles is given by

0.2|Δ𝜃(𝑡𝑚𝑎𝑥)| ≤ |Δ𝜃(𝑡)| (9)

with which the changes of angles Δ𝜃 at times t surrounding the local maxima are included
in the tumble if they are larger than 20% of Δ𝜃(tmax).

Finally, we combine both conditions so the parts of the trajectories to which both conditions
apply are detected as tumbles, while the remaining parts of the trajectory are classified as runs.

Order parameter analysis: For the purpose of analysis, the 2D images of the Janus GUVs
are "unwrapped" into a 1D signal representation. The unwrapping process involves tracing
around the perimeter of the vesicle in the 2D image and converting this trace into a 1D sequence.
This sequence, or signal, maintains the order of red and green labels as they appear around the
vesicle’s circumference. The unwrapping ensures that the spatial relationships between different
regions on the vesicle are preserved in the 1D representation. Once the 1D signal is generated,
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we precisely identify transitions between regions labelled red and green. These transitions de-
marcate the boundaries of contiguous segments, allowing us to measure their spatial extent.
Such measurements provide quantitative insight into the spatial persistence of each label. Next,
we measure the angular distribution by the midpoints of these segments, that are computed and
converted to angular coordinates, with the full circumference of the vesicle equated to (2𝜋). This
transformation facilitates quantitative analysis of the relative positioning of labelled segments
around the vesicle. By computing angular differences between adjacent midpoints, we deter-
mine the degree of spatial uniformity in label distribution.

Gradient Calculation and identification of transitions. Given the 1D signal, S, of length
N, the gradient is computed to identify the transition points between the red and green labels:

∇𝑢𝑖 = 𝑢𝑖+1 − 𝑢𝑖 (10)
Considering the periodic boundary conditions:

∇𝑢𝑁 = 𝑢1 − 𝑢𝑁 . (11)

The transition from green to red is indicated by a gradient of +1, and from red to green by a
gradient of -1. Based on these transitions, we identify the start and end of each step. Next we
can compute the length of each step, L, is computed as:

𝐿𝑖 = End𝑖 − Start𝑖, (12)

where End𝑖 and Start𝑖 represent the end and start of the 𝑖𝑡ℎ step, respectively. Once we have the
Starti and the length of the step Li we can compute the angular position of each step by first
computing the midpoint of each step, and then the position is converted to an angular value
considering the full signal:

𝜃𝑖 =
(Midpoint𝑖

𝑁

)

× 2𝜋 (13)
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Signal Fragmentation. The gradient of the signal, capturing differences between successive
data points, indicates transitions between labelled regions. The sum of the absolute values of
this gradient provides a metric for the overall fragmentation of the signal:

𝐹 =
∑

𝑖
|∇𝑢𝑖|, (14)

where F denotes the fragmentation measure, and ∇ui represents the gradient at the ith po-
sition. An increase of F suggests increased fragmentation, indicative of frequent transitions
between labelled regions. Note that when the system is fully separated, i.e there are only two
regions, the value of F = 2 and when the system is at the maximum disorder the value of F
would be equal to the number of pixels, N, being measured.

Simulation of Active Brownian and Run and Tumble

Here, we use two models two compare the experimental results with numerical simulations.

Active Brownian Particles: We simulate the dynamics of the ABPs by solving the equations
of motion in the over-damped limit as15 :

𝑥𝑖 = 𝑥𝑖−1 + 𝑣 𝑐𝑜𝑠𝜑𝑖−1

√

2𝐷𝑇Δ𝑡𝜉𝑥,𝑖

𝑦𝑖 = 𝑦𝑖−1 + 𝑣 𝑠𝑖𝑛𝜑𝑖−1

√

2𝐷𝑇Δ𝑡𝜉𝑗,𝑖

𝜑𝑖 = 𝜑𝑖−1 + Ω Δ𝜑𝑖−1

√

2𝐷𝑅Δ𝑡𝜉𝜑,𝑖

(15)

where v is the velocity of the particle, Ω the angular velocity, and 𝜉 represent independent
white noise processes.

We simulate the motion of ABP of the size of our vesicles, with R = 3±2.1 𝜇m, and average
velocity v = 1.1 𝜇ms−1 from instantaneous velocities differentiating the run and tumbles. Given
the absence of torque a priori on our particles, we set the angular velocity Ω to zero. The temper-
ature is set at 298 K and the viscosity 𝜂 of MilliQ water with 25 mM of sucrose of 0.001Pas. The
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translational and rotational diffusion coefficients, DT and DR, are given by the Stokes-Einstein
equations. We run simulations for a total number of 50’000 steps, with a dt of 0.4 s between
each step, corresponding with the time resolution of our experiments.

Run and Tumble Particles: We based our simulations on the RTP model to describe the
observed run and tumble dynamics of the Janus GUVs, adjusting to the experimental parameters
from Seyrich et al.14. Thus, we simulate the state of a particle by determining each state’s dura-
tions by generating a random number that is exponentially distributed around the experimental
mean run t̄run and mean tumble times t̄tum. If the particle is in a tumbling state, it exhibits no
self-propulsion, causing the velocity term to approach zero. Therefore, the particle experiences
only reorientation and translational diffusion given by the effective rotational and translational
diffusion coefficients DR,eff and DT,eff respectively, which are determined from experimental
data. We simulate the tumbles by solving the following Langevin equations.

𝑥𝑖 = 𝑥𝑖−1 +
√

2𝐷𝑇 ,𝑒𝑓𝑓Δ𝑡𝜉𝑥,𝑖

𝑦𝑖 = 𝑦𝑖−1 +
√

2𝐷𝑇 ,𝑒𝑓𝑓Δ𝑡𝜉𝑗,𝑖

𝜑𝑖 = 𝜑𝑖−1 +
√

2𝐷𝑅,𝑒𝑓𝑓Δ𝑡𝜉𝜑,𝑖

(16)

When the particle switches to the run state we solve the same overdamped Langevin equations
as in the ABP model, substituting the velocity v for the velocity of the runs vrun.

Mean Square Displacements (MSD)

The MSD of the GUVs was calculated using the x- and y-coordinates of the trajectories of the
microswimmers obtained from particle tracking according to equation 17.

𝑀𝑆𝐷(𝑡) = ⟨(𝑟(𝑡) − 𝑟(0))2⟩ = 1
𝑁

𝑁
∑

𝑖=1
((𝑥𝑖(𝑡) − 𝑥𝑖(0))2 + (𝑦𝑖(𝑡) − 𝑦𝑖(0))2) (17)
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The MSD of Brownian motion in two dimensions is described by equation 18,

𝑀𝑆𝐷(𝑡) = 4𝐷𝑇 𝑡
𝛾 (18)

where DT is the translational diffusion coefficient, t is the time and 𝛾 is an exponent describing
the type of motion the GUV exhibits. To determine this exponent, the slope of the MSD curve in
a log-log-plot which corresponds to 𝛾 can be determined. For 𝛾 ≈ 1 the motion of the vesicle is
Brownian and for 𝛾 > 1 the MSD increases exponentially as the Janus GUV experiences propul-
sion and exhibits active motion. The experimental diffusion coefficient DT was determined by
fitting the MSD curve to equation 18. The theoretical diffusion coefficient DT,Theo can also be
calculated using the Stokes-Einstein relation (eq. 19)

𝐷𝑇 ,𝑇 ℎ𝑒𝑜 =
𝑘𝐵𝑇
6𝜋𝜂𝑅

(19)

where kB is the Boltzmann constant, T is the Temperature, 𝜂 is the viscosity of the surround-
ing medium and R is the radius of the particle.

Active motion is defined as:

𝑀𝑆𝐷(𝑡) = 4𝐷𝑇 𝑡 + 𝑣2𝑡2 (20)

where the first term accounts for the Brownian motion and the second term represents the
active propulsion. Over short times (t << 𝜏R) this trajectory will be ballistic. Its MSD can be
fitted to equation 20, using DT values obtained from fitting the passive trajectories, to determine
the propulsion velocity v.

Over long times (t >> 𝜏R) rotational diffusion becomes unnegligible. Therefore, the expres-
sion for the MSD will also include diffusive terms (eq. 21) and the MSD curves will show a
crossover from ballistic to diffusive motion at the rotational diffusion time 𝜏R 16.

𝑀𝑆𝐷(𝑡) = 4𝐷𝑇 𝑡 + 2𝑣2𝜏2𝑅(
𝑡
𝜏𝑅

+ 𝑒−
𝑡
𝜏𝑅 − 1) (21)
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The rotational diffusion coefficient DR = 𝜏−1R can also be found by fitting the MSD to equa-
tion 21. Similarly to DT,Theo, the theoretical DR,Theo can also be calculated using the Stokes-
Einstein relation (eq. 22)17.

𝐷𝑅,𝑇ℎ𝑒𝑜 =
𝑘𝐵𝑇
8𝜋𝜂𝑅3

(22)
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List of Supplementary Videos

• Video S1: Passive dynamics of Phase-separated passive giant unilamellar vesicles (GUVs).
Phase-separated passive giant unilamellar vesicles (GUVs) exhibiting Brownian motion
in the absence of an external AC field. RhPE segregates into the liquid-disordered phase
(red) and NBDPE is distributed in the whole vesicle (green). Scale bars indicate 20 𝜇m.

• Video S2: Vesicle bursting at low frequencies. Example of a vesicle bursting in real-time
upon lowering the frequency of the applied AC field from 10 kHz to 1 kHz at 10 Vpp. The
scale bar indicates 25 𝜇m.

• Video S3: Active motion of Janus GUVs. Examples of phase-separated Janus vesicles
with asymmetry and their active motion under AC electric field of 10 kHz and 9 Vpp. The
scale bars are 50 𝜇m.

• Video S4: Flow identification with tracers around the GUVs. Movie showcasing small
tracers being pushed by EHD flows away from fixed vesicle with single composition GUV
(first video), and on an active phase separated GUV (second video), confirming the motion
of the vesicles is caused via EHD flows at 10 kHz and 9 Vpp in the first example and 5 kHz
and 9 Vpp in the second example. The scale bar in the first example represents 20 𝜇m and
the scale bar in the second example indicates 25 𝜇m.

• Video S5: Run and tumble trajectories of GUVs. Three individual examples of single
phase-separated vesicles exhibiting active motion via EHD flows at AC field frequencies
at different field conditions, with their trajectory colour-coded with their instantaneous
velocity v (in 𝜇m∕s) between two frames, going from dark blue (low v) to yellow (high
v), and its velocity vector. The first example is at 5 kHz and 9 Vpp, the second example is
at 10 kHz and 7 Vpp, and the third example is at 10 kHz and 9 Vpp. The scale bars in all
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three examples indicate 15 𝜇m

• Video S6: Motion of GUV containing small GUV. Large vesicle moving with a smaller
vesicle inside, acting as a proof of concept for cargo transport with active vesicles moving
at 10 kHz and 9 Vpp. Only the red channel was used during imaging. The scale bar is 10
𝜇m.

• Video S7: Proof of concept or cargo uptake and transport. Janus GUV interacting with a
2 𝜇m polystyrene colloid dispersed in the media taken under bright field microscopy. The
activity of the Janus GUV is given by the applied AC field at 10 kHz and 8 Vpp.
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