Supporting Information

Pronounced Effect of Strain Biaxiality on High-Temperature Behavior of Strain-Crystallizing Elastomers[†]

Ryosuke Osumi,^a Thanh-Tam Mai,^b Katsuhiko Tsunoda,^c Kenji Urayama^{b,*}

^a Department of Polymer Science and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan

- ^b Department of Material Chemistry, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
- ^c Sustainable and Advanced Materials Division, Bridgestone Corporation, Tokyo 187-8531, Japan

*To whom correspondence should be addressed: urayama.kenji.2s@kyoto-u.ac.jp

Fig. S1. Spatial distribution of each component in deformation gradient tensor in the Pgeometry under an applied stretch of $\Lambda_y = 3.5$. In the observed region, λ_{yy} is uniform while λ_{yx} is nearly zero, indicating negligible shear. The variations in λ_{yy} indicate the transition of local deformation from planar to pseudo-uniaxial stretching as the position shifts from the center to free edges.

S-2. Crystallinity Evaluation via Surface Calorimetry

S-2-1. Outline

This section describes the outline of the method for evaluating the crystallinity from heat emission observed during stretching of NR samples in the U- and P-geometries (Fig. 1). This evaluation follows the methodology established by Le Cam et al. which determines crystallinity from heat emission in a rectangular NR specimen under uniform uniaxial stretching.^{1,2} Temperature rises (ΔT) measured during stretching under nonadiabatic conditions are influenced by thermal dissipation and other factors. The following heat diffusion model combining heat generation and dissipation³ was utilized:

$$s = \rho C \left(\frac{\mathrm{d}T}{\mathrm{d}t} + \frac{\Delta T}{\tau} \right)$$
 (S2 - 1)

where *s* is the overall heat power density caused by applied deformation, *t* is the elapsed time after deformation onset, $\rho (= 0.936 \text{ kg/dm}^3)$ and $C (= 1768 \text{ J/kg}\cdot\text{K})$ are the sample density and the heat capacity, respectively. The time constant for heat dissipation at the position of interest (τ) was separately estimated from the temperature recovery, as described in next section. The ΔT - A_y data obtained at each position (**Figure S2a**) were converted into the *s*- A_y relationships using equation (S1) (**Figure S2b**). The applied stretch (A_y) is a function of *t* as expressed by $A_y = (L_{y0} + Vt)/L_{y0}$ where L_{y0} and *V* are the initial gauge length and crosshead speed, respectively. The overall heat power density (*s*) beyond the onset stretch of SIC ($A_y > A_y^*$) contains contributions from SIC (s_{SIC}) and entropy elasticity (Gough-Joule effect) (s_{GJ}). By fitting an empirical function to the data at $A_y < A_y^*$ without SIC (**Figure S2b**, black line), s_{GJ} was extrapolated to higher A_y , enabling the evaluation of s_{SIC} at $A_y > A_y^*$. The *s*- A_y data at each position were used for evaluating s_{GJ} . The temperature rise specifically stemming from SIC as a function of *t* (or A_y) (**Figure S2c**) was estimated as:

$$\Delta T_{\rm SIC}(t) = \frac{s_{\rm SIC}(t)\Delta t}{\rho C} + \Delta T_{\rm SIC}(t - \Delta t)$$
(S2 - 2)

where $\Delta T_{\text{SIC}}(0) = 0$. Crystallinity $\chi(t)$ [or $\chi(\Lambda_y)$] (Figure S2d) was calculated from:

$$\chi(t) = \frac{\rho C \Delta T_{\rm SIC}(t)}{\Delta H}$$
(S2 - 3)

with ΔH (= 6.2×10⁴ J/dm³), the equilibrium enthalpy of melting of polyisoprene crystal.⁴ For the U-geometry, this protocol was applied to the ΔT - Λ_y data at the central position of the samples. For the P-geometry, this protocol was applied to the data at selected 10 positions along the central horizontal line (**Figure 3e**). **Figure S3** shows the results via this protocol for the central position in the P-geometry of the NR specimen.

At low values of Λ_y , below the threshold for SIC initiation, the calculated s_{SIC} values obtained by subtracting the estimated s_{GJ} from the total *s* should ideally be zero. However, due to inherent scatter in the raw *s* data, s_{SIC} occasionally appears slightly negative (although its level is extremely close to zero). Since such negative s_{SIC} values are physically meaningless (implying negative χ), they were set to zero in the analysis.

Fig. S2. (a) ΔT , (b) *s*, (c) ΔT_{SIC} and (d) χ as a function of Λ_y for a NR specimen in the U-geometry stretching. The data are obtained at the central position of the specimen.

Fig. S3. (a) ΔT , (b) *s*, (c) ΔT_{SIC} and (d) χ as a function of Λ_y for a NR specimen in the P-geometry stretching. The data are obtained at the central position of the specimen.

S2-2. Evaluation of time constant for heat dissipation

Local time constant for heat dissipation at the position of interest (τ) was evaluated from temperature recovery to ambient temperature following the SIC-driven temperature rise (**Figure S4**). This temperature recovery was measured for specimens stretched rapidly to $\Lambda_y = 7$ at a crosshead speed of 15 mm/s. The τ value was evaluated by fitting a single exponential function.

We also considered the local strain dependence of τ , which originates from thickness reductions during stretching, according to the method of Le Cam et al.^{1,2} This effect was considered using the deformation biaxiality ratio as:

$$\tau = \frac{\tau_0}{\lambda_x \lambda_y} \tag{S2-4}$$

where τ_0 is the dissipation time constant in the undeformed state. The time τ_0 at each position was obtained using the values of λ_x , λ_y and τ at $\Lambda_y = 7$.

Fig. S4. Recovery behavior after temperature rise via SIC driven by applied rapid and constant stretch (Λ_{y0}) for the IR specimens at (a) the central position in the U-geometry and (b) the central and edge positions in the P-geometry. The black lines in the figures represent the fitted single exponential functions with the characteristic times (τ).

References:

- Le Cam, J.-B. Strain-Induced Crystallization in Rubber: A New Measurement Technique. *Strain* 2018, 54 (1), e12256.
- (2) Le Cam, J.-B.; Albouy, P.-A.; Charlès, S. Comparison between X-Ray Diffraction and Quantitative Surface Calorimetry Based on Infrared Thermography to Evaluate Strain-Induced Crystallinity in Natural Rubber. *Revi Sci Instrum* 2020, 91 (4), 044902.
- (3) Chrysochoos, A. Anlyse Du Comportement Des Matériaux Par Thermographie Infra Rouge.
 Colloque Photomécanique 1995, 95, 201–211.
- (4) Kim, H.; Mandelkern, L. Multiple Melting Transitions in Natural Rubber. *Journal of Polymer Science Part A-2: Polymer Physics* 1972, 10 (6), 1125–1133.