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Details for solid phase modeling

The coarse-grained spectral linking membrane model is used for the solid phase modeling. The 

model incorporates four main types of forces, each representing a specific mechanical behavior: S1 

The link force acts along the links and represents the reaction to stretching and compression of 

the underlying spectrin-network beneath the links.
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where is the normal strain,  is the persistence-length of a spectrin filament that equals 
𝑑𝐿 =  

𝐿𝑖 ‒ 𝐿0

𝐿0
 

𝑝

7.5 nm, and  is the relative expansion ratio at which the spectrin-network reaches its 𝜏𝑙 = 3.00

persistence length.

The bending force acts between adjacent cell surface elements, reflecting the membrane’s 

reactive response due to the underlying cytoskeleton and the non-zero thickness of the spectrin-

network. This force is applied in the normal direction of each surface element.
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where , and is the limiting angle. Using the micropipette aspiration images,  𝑑𝜃 =  𝜃𝑖 ‒ 𝜃0
𝜏𝑏 =  

𝜋
6

 𝜏𝑏

is calibrated for this problem and it is chosen to prevents unrealistic sharp surface edges. S1

The local surface conservation force reflects the response of the membrane and the spectrin-

network to stretching and compression. It acts on each surface element, evenly distributed across 
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the three vertices of the cell surface triangles, and directed toward the centroid of these triangle.

(S3)
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where is the relative deviation from the initial area and  is the limiting factor 
𝑑𝐴 =  

𝐴𝑖 ‒ 𝐴0

𝐴0
 

𝜏𝑏 =  0.30

to prohibit surface area changes more than 30%. For  near 30%, the area force gets large enough 𝑑𝐴

to stop further expansion of the surface area. Large changes in the surface area can lead to permanent 

damages to the cell membrane.

The volume conservation force applies globally to all nodes of the cell, ensuring the cell's 

quasi-incompressibility. It is directed along the normal of each surface triangle.

(S4)
𝐹𝑣𝑜𝑙𝑢𝑚𝑒 =  ‒
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where  is the relative deviation from initial volume and  is the limiting factor 
𝑑𝑉 =  

𝑉𝑖 ‒ 𝑉0

𝑉0 𝜏𝑣 =  0.01

to resist changes in the cell volume.

The combined effect of these forces enables the model to accurately simulate the dynamic 

behavior of the cells in the flow. The stiffness of the cells can be modulated by adjusting the three 

free parameters in the constitutive model: , ,  and . 𝑘𝑙 𝑘𝑏 𝑘𝑎 𝑘𝑣

The cell stiffness is characterized using the surface Young's modulus parameter (Es), which 

can be derived from optical tweezer simulations. S2 In the simulation, a number of vertices on 

opposite sides of the cell membrane, approximately 2% on each side, are selected to simulate the 

contact region of the optical tweezers. A constant force is maintained to allow the red blood cell 

(RBC) to reach equilibrium. By measuring the axial diameter along the stretching direction and the 

transverse diameter perpendicular to it, strain is computed based on the relationship between force 

and deformation, and described using to the formula calculate the surface Young's modulus (Es) of 

the cell. 

(S5)
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Assuming the initial diameter of the cell is and the longest diameter after deformation is 𝐿, 𝐿0 

the stretch ratio of the cell is defined as . B represents the bending modulus of the cell, 𝑟 is 
𝜀 =  

𝐿
𝐿0

the initial radius of the cell, and F is the force applied at both ends of the cell.

Geometry and boundary conditions

In this study, the adopt of periodic boundary conditions in the simulation is reasonable and 



represents a common approach in current blood flow simulations, although it does not fully reflect 

the actual conditions in real blood vessels. Relevant literature includes the work by Wang et al. S3, 

who simulated a thrombosed vessel with a total length of 45 μm, including a 15 μm stenosed 

segment. The periodic boundary conditions were applied at both inlet and outlet. Their study showed 

that at low Reynolds numbers, RBCs influence the blood flow and enhance the deposition of freely 

flowing platelets onto the thrombus. Similarly, Ye et al. S4 modeled thrombus formation in a 

cylindrical vessel with a stenosed region. The total vessel length was 74 μm, with the stenosed 

segment measuring 18 μm. The periodic boundary conditions were also used at both ends. By 

studying the circulation of nanoparticles and microparticles (including spherical particles and 

filamentous nanoworms) in RBC suspensions through the constricted channel mimicking 

microvascular stenosis, they found that the accumulation of 1 μm diameter spherical particles in the 

stenosed region increases with both the length and degree of stenosis. This was attributed to the 

interactions between spheres and RBCs.

To evaluate whether a total vessel length of 50 μm is reasonable in the current study, we 

increased the total length from 50 μm to 70 μm while keeping the stenosed segment unchanged. All 

other simulation parameters were held constant. Fig. S1 shows the variation of CTC velocity over 

time. The curves for vessel lengths of 70 μm and 50 μm are nearly identical, and both show CTC 

adhesion during the vessel constriction. Therefore, although the use of periodic boundary conditions 

in the simulation does not fully represent real blood flow conditions, it is nonetheless a reasonable 

and justified approach.

Fig. S1. CTC velocity over time

Mesh and time-step convergence



We conducted a convergence study by refining the Lagrangian mesh of RBCs, which represent 

one of the critical components in our model. In the baseline case, each RBC membrane is discretized 

using  vertices. For the refined case, the number of vertices was increased to 2562 𝑁𝑣 = 642 𝑁𝑣 =  

vertices. The results, as shown in Fig. S2, compare the velocity of CTC over time for both mesh 

resolutions. The two curves exhibit very similar trends, indicating that the numerical solution is not 

significantly affected by further mesh refinement. This suggests that the original discretization is 

sufficiently fine to ensure the numerical accuracy and stability.

Fig. S2. CTC velocity over time

To investigate the impact of simulation time on the predictions, we extended the simulation by 

an additional 4.5 million timesteps under the conditions of a hematocrit of 10% and a Reynolds 

number of 0.01, to ensure that the final outcome would remain unchanged over time. It was observed 

that the firm adhesion between CTC and vessel wall, as well as the position of CTC, remained 

stable. Moreover, the aspect ratio of CTC increased by less than 10%. These findings indicate that 

the final result of the model is stable and insensitive to the simulation time span.

Cell membrane viscoelasticity and cytoplasmic viscosity

The viscoelasticity of cell membrane and the viscosity contrast between intracellular and 

extracellular fluids play a significant role in the cell dynamics under strong confinement. In this 

study, RBCs are modeled using the spectrin-link-based elastic membrane model implemented in the 



HemoCell platform, which has been extensively validated for capturing large deformations and 

reproducing both tank-treading and tumbling behaviors. The different cell motion modes in 

HemoCell have been validated against the experimental data. De Haan et al. S5 performed the 

Wheeler test and compared it with the experimental values, showing that the deformation index of 

RBCs in Couette shear flow (with shear rates between 10 and 200) is consistent with the 

experimental results. Závodszky et al. S6 compared the stretching curve of the cellular material 

model in HemoCell with the experimental results, validating that the cellular constitutive membrane 

model can accurately reproduce the stretching behavior of a single RBC. Additionally, the parachute 

motion behavior of RBCs was also validated.

The present model does not yet account for the viscoelasticity of RBC membrane or the internal 

viscosity of cell. Incorporating the viscoelastic factors into the model may influence the shear force 

distribution exerted by RBCs on CTCs, thereby altering the quantitative characteristics such as the 

velocity of CTCs. Taking the increase in intracellular viscosity as an example, we performed one 

additional simulation, it can be observed that considering a viscosity ratio between the interior and 

exterior of RBCs—where the internal viscosity is five times that of the surrounding plasma—leads 

to a noticeable difference in CTC velocity, as shown in Fig. S3, although the overall trend remains 

consistent. We believe that introducing viscoelasticity will not change the main conclusions of this 

study, but it may introduce errors at the quantitative level. Given the significant workload required 

to implement and validate a viscoelastic model, we plan to further explore this topic in future 

research.



Fig. S3. CTC velocity over time at different intra-/extracellular viscosities
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