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I. ILLUSTRATION OF THE SYSTEM UNDER CONSIDERATION

Figure S1 illustrates the system under consideration in this work. Starting from the Grandjean texture (which is the
typical equilibrium structure for a cholesteric confined between two flat substrates with planar anchoring conditions),
we apply an electric field until the helix is completely unwound and the Homeotropic structure is achieved. Then,
the field is suddenly turned off, and we study the transient states that arise from the time t = 0 ms (considered from
the moment the field is shut off) for all the different materials and alignment conditions leading to the return of the
Gradnjean texture (which takes tr ms). The duration of this relaxation process (tr) can vary based on the specific
attributes of the sample.

FIG. S1: Illustration of the system under consideration in this work. The sample is initially in the Grandjean state
when an electric field is applied and the helical structure unwound. Then, the field is turned off at t = 0 ms and we

monitor the transient states leading to the return of the Grandjean structure at time t = tr.

II. LANDAU-DE GENNES MODEL

The Landau-de Gennes free energy is formulated through the symmetric, traceless order parameter tensor Qij ,
integrating all parameters of nematic liquid crystals in the following manner:

Qij = 3/2S(ninj − 1/2δi,j) + 1/2P (lilj −mimj) (S1)

In this context, (S) and (P ) represent the uniaxial and biaxial order parameters. Here, n⃗ denotes the primary director,

l⃗ signifies the secondary director, and the vector m⃗ is defined as n⃗× l⃗. Deviations from the equilibrium values for all

Supplementary Information (SI) for Soft Matter.
This journal is © The Royal Society of Chemistry 2025



2

these parameters are interconnected through a free energy density expressed as:¿

fLDG(Q) =
a

2
(T − T ∗)Tr(Q2) +

B

3
Tr(Q3) +
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4
Tr(Q2)2 +

1

2
L1 (Qjk,i) (Qjk,i) (S2)

+
1

2
L2 (Qji,i) (Qjk,k) +

1

2
L3Qij (Qkl,i) (Qkl,j) +

1

2
Ls (Qij,k) (Qik,j)

+
4π

P0
LqϵiklQij (Qlj,k) ,

where Qij,k = ∂Qij/∂xk represents the spatial derivative of Qij along the k-th direction, with T signifying the
sample liquid crystal temperature and T ∗ the hypothetical temperature for the nematic-isotropic phase transition.
In this equation, the initial three terms denote the energy linked to the uniaxial and biaxial order parameters at
temperature T . Meanwhile, the subsequent five terms describe a structure similar to Franks’ elastic free energy for
the Q-tensor. Here, the variations in the liquid crystal directors n, l, and m are interconnected with the values of the
order parameters S and P and their spatial variations.
The nematic order parameter S in terms of the material parameters a,B, and C can be found by minimizing eq.

S2 as Seq = [−B +
√
B2 − 24AC]/(6C), with A = a(T − T ∗). Given Seq as previously established, and using the

approximation Qij = Seq(3/2ninj−1/2δi,j), one can infer the connection between the elastic parameters of Landau-de
Gennes and Frank:[1, 2]:

L1 =
2(−K11 + 3K22 +K33)

27S2
eq

; (S3)

L2 =
4(K11 −K22 −K24)

9S2
eq

;

L3 =
4(−K11 +K33)

27S3
eq

;

Lq =
4K22q0
9S2

eq

;

Ls =
4K24

9S2
eq

.

q0 = 2π/p0 represents the chiral wavevector, and K11, K22, K33 and K24 represent the elastic constants of splay,
twist, bend, and saddle-splay, respectively.

To replicate the interaction between the sample and the surfaces, a corresponding form of the Rapini-Papoular
anchoring energy was employed for the Q-tensor to produce both the rubbed planar and homeotropic cases:

fsurf =
1

2
W (Qij −Q0

ij)(Qij −Q0
ij), (S4)

where W denotes the anchoring strength and Q0
ij represents the optimal Q-tensor value on the surface, defined as

Q0
ij = Seq(3/2n

0
in

0
j − δi,j/5), where n⃗

0 is the easy axis of the surface. In addition to modifying molecular orientation,
this potential can adjust the parameter S near the surface. The planar degenerate case was treated here using the
Fournier-Galatola energy: [3]

fsurf (Q) =WP

(
Q̃ij(Q)− Q̃⊥

ij(Q)
)2

, (S5)

where WP is the anchoring strength, Q̃ij(Q) = Qij + S/3δij and Q̃ij
⊥
(Q) = (δik − νiνk)Qkl(δlj − νlνj).

Regarding the interaction between the sample and an applied electric field, the energy density is expressed as:

fele = −1

3
∆εε0(EiEjQij), (S6)

with ϵ0 and ∆ϵ = ϵ∥ − ϵ⊥ being the vacuum permittivity and the dielectric anisotropy, respectively. Thus, the total
free energy of the system can be described by:

Ftot =

∫
vol

fbulkdV +

∮
surf

fsurfdS, (S7)
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with fbulk = (fLdG + fele). The dynamics of the system can be determined via the Landau-de Gennes dynamical
equation, which outlines the progression of Qij in the bulk for systems without material flow:

µb
dQij

dt
= Λijkl

(∂fbulk
∂Qkl

− ∂

∂xm

∂fbulk
∂Qkl,m

)
. (S8)

In this context, µb = γb/S
2
eq, where γb denotes the bulk rotational viscosity, accounts for the bulk dissipation. The

expression λijkl =
∑3

k=1

∑3
l=1(δi,kδj,l + δi,lδj,k − 2/3δi,jδk,j) ensures that the tensor Qij remains symmetric and

traceless. On the surface, the Q tensor evolves as follows:

µs
dQij

dt
= Λijkl

(
νm

∂fbulk
∂Qkl,m

− ∂fsurf
∂Qkl

)
, (S9)

where νm is them’s component of the vector normal to the surface, and µs represents the surface viscosity as previously
discussed.

III. SIMULATION ASPECTS

Our numerical model was constructed using the Comsol framework, offering approximation functions ϕen(x), quadra-
ture techniques for spatial integration, a solver for nonlinear equations, and a BDF method for time integration. The
full weak form was algebraically processed with Mathematica software, and readers can request the entire expression
if needed. More details can be found in reference [4]. To ensure the ratio K33/K22 = 2, the simulation was per-
formed using a set of elastic parameters similar to the MLC6608 host, that is, K11 = 16.7 pN, K22 = 9.05 pN, and
K33 = 18.1 pN, which were converted into parameters Li by Eq. S3. For the K33/K22 = 1 case we used K11 = 16.7
pN, K22 = 18.15 pN and K33 = 18.1 pN. For the K33/K22 = 0.067 case, we used K11 = 12.0 pN, K22 = 6.0 pN
and K33 = 0.4 pN, which are similar to the values found for the dimer CB7CB [5]. Furthermore, we used Ls = 0.0
pN, and q0 = 2.51 × 10−7 m−1. For bulk and surface viscosities (γb and γs) we used 0.186 Pa−1 and 10−8 Pa−1, as
discussed in the reference [6].

The interaction between the LC and the surfaces was evaluated utilizing the Rapini-Papoular-like anchoring energy,
given by Eq. S4, with an anchoring strength of 0.01 Jm−2, which represents a strong anchoring situation [7]. Both
simulated surfaces were constructed with the easy axis in the x-direction with a pretilt of 1◦; that is, the easy axis

can be described by n⃗0 = cos 1◦î + sin 1◦k̂. Using a pretilt can prevent the formation of surface defects, but in the
chiral case, the pretilt also creates a preference for the system to have an even or odd number of twists.

To achieve the homeotropic state, a powerful electric field of E = 8.14 ∗ 107 Vm−1k̂ was applied for a duration of
1 ms. This field strength is four times greater than the critical electric field required for the planar-to-homeotropic
and fingerprint-to-homeotropic transitions in a material characterized by the specified elastic constants and dielectric
anisotropy of ∆e = 4.2. The simulations used a mesh of tetrahedral elements with a maximum edge length of 36
µm and employed linear interpolation. The system was computed with a variable-order BDF integrator regarding
temporal evolution. The simulations progressed over a time frame ranging from milliseconds to several seconds to
ensure that the system achieved equilibrium. The system’s state was recorded logarithmically, yielding more states
at the beginning and fewer as time progressed.

IV. ELASTIC ENERGY CURVES

We interpolate the mesh for every state during the time evolution to get the directors and calculated Frank’s total
elastic energy and the individual energies of Splay, Twist, and Bend during the relaxation process. Figs. S2 (a) to
(i) show how the normalized elastic energies of Splay, Twist, and Bend, respectively, evolve with log(t) for the cases
K33/K22 = 2 ((a) to (c)), K33/K22 = 1 ((d) to (f)), and K33/K22 = 0.067 ((g) to (i)) for all anchoring types studied
here. Normalization is done by dividing the energy at any given time by the energy of the homogeneous state after
the transition ends, so it is easy to compare the magnitude of the variation during the transition.

V. SIMULATIONS OF OPTICAL TEXTURES

Optical textures were built by simulating a polarized light microscopy experiment. The optical devices are repre-
sented by the Stokes vector and the Mueller matrices [8, 9].
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FIG. S2: Dynamics of the three main kinds of energy distortions representing all the cells studied in this work. The
first row represents the case K33 = 2.0K22, the second row represents K33 = 1.0K22, and the last row is for
K33 = 0.067K22. The columns represent the change in time of Splay, Twist, and Bend deformations. All the

energies are normalized by the energy in the final state, after the cell has reached a stable state.

An unpolarized light beam is represented by a Stokes vector as:

T⃗in =

100
0

 . (S10)

A linear polarizer with polarization angle ψ with respect to a supposed x direction in the laboratory frame can be
expressed as:

PL(ψ) =


1 cos(2ψ) sin(2ψ) 0

cos(2ψ) cos2(2ψ) cos(2ψ) sin(2ψ) 0
sin(2ψ) cos(2ψ) sin(2ψ) sin2(2ψ) 0

0 0 0 0

 . (S11)

When a polarized light beam emerges in an electric anisotropy medium, such as an LC sample, the dielectric
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anisotropy causes a retardation in a component of the beam. The interaction of the beam with the liquid crystals can
be written in terms of a Mueller matrix as follows:

Mk =


1 0 0 0
0 cos2(2θ) + sin2(2θ) cos δ sin(2θ) cos(2θ)(1− cos δ) sin(2θ) sin δ
0 sin(2θ) cos(2θ)(1− cos δ) sin2(2θ) + cos2(2θ) cos δ − cos(2θ) sin δ
0 − sin(2θ) sin δ cos(2θ) sin δ cos δ

 , (S12)

with θ being the projection of n⃗ in the plane perpendicular to the beam light. The parameter δ is given by:

δ =
2πh

λe
no

( ne
ne,k

− 1
)
, (S13)

in which h is the distance traveled by the beam and λe is its wave-length. The parameters no and ne are the ordinary
and extraordinary refractive indices, respectively. And, finally, ne,k =

√
n2o + (n2e − n2o) cosϕ, where ϕ is the angle

between n⃗ and the beam. A single pixel at a point (x, y) of the sample is built by considering an unpolarized beam
light in the z direction of the laboratory frame, interacting with a polarizer (Ppol), all sample sites of the discretized

lattice across the z direction (M (x,y)) and finally an analyzer (Pan). Such a process is mathematically described by
the following:

T⃗
(x,y)
out = Pan

∏
k

Mk
(x,y)PpolT⃗in. (S14)

Hence, the intensity of the light transmitted with wavelength λ is given by the first element of T⃗out. Different
wavelengths can be combined to build a colorful texture. In this paper, we used nine values of λ (380 nm, 410 nm,
440 nm, 470 nm, 500 nm, 530 nm, 575 nm, 620 nm, 650 nm). Moreover, no = 1.5 and ne = 1.7 respectively, and the
length of layer separation of h =0.56 µm.

VI. RELAXATION VIDEOS

As supplementary information, we added 16 videos to illustrate the relaxation dynamics reported in this article.
The videos are provided in .mp4 format. The videos are as follows.

fg1k2.mp4: Dynamics of the cell for K33 = 1.0K22 and FG anchoring condition.
fg2k2.mp4: Dynamics of the cell for K33 = 2.0K22 and FG anchoring condition.
fgbt.mp4: Dynamics of the cell for K33 = 0.067K22 and FG anchoring condition.
hs1k2.mp4: Dynamics of the cell for K33 = 1.0K22 and HS anchoring condition.
hs2k2.mp4: Dynamics of the cell for K33 = 2.0K22 and HS anchoring condition.
hsbt.mp4: Dynamics of the cell for K33 = 0.067K22 and HS anchoring condition.
hybs1k2.mp4: Dynamics of the cell for K33 = 1.0K22 and Hyb anchoring condition.
hybs2k2.mp4: Dynamics of the cell for K33 = 2.0K22 and Hyb anchoring condition.
hybsbt.mp4: Dynamics of the cell for K33 = 0.067K22 and Hyb anchoring condition.
na2k2.mp4: Dynamics of the cell for K33 = 2.0K22 with free boundaries.
ps1k2.mp4: Dynamics of the cell for K33 = 1.0K22 and PS anchoring condition.
ps2k2.mp4: Dynamics of the cell for K33 = 2.0K22 and PS anchoring condition.
psbt.mp4: Dynamics of the cell for K33 = 0.067K22 and PS anchoring condition.
pw1k2.mp4: Dynamics of the cell for K33 = 1.0K22 and PW anchoring condition.
pw2k2.mp4: Dynamics of the cell for K33 = 2.0K22 and PW anchoring condition.
pwbt.mp4: Dynamics of the cell for K33 = 0.067K22 and PW anchoring condition.
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