Supporting Information

Diverse Nanostructures and Antimicrobial Activity of Lipopeptides Bearing Lysine-Rich Tripeptide Sequences

Ian W. Hamley,^{1,*} Valeria Castelletto,¹ Callum Rowding, ¹ Callum Wilkinson, ¹ Lucas R. de Mello,¹ Bruno Mendes, ² Glyn Barrett, ² Jani Seitsonen³

¹ School of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, U.K.

² School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AS, U.K.

³ Nanomicroscopy Center, Aalto University, Puumiehenkuja 2, FIN-02150 Espoo, Finland

(b)

(a)

SI Fig.S1. Additional cryo-TEM images for 1 wt% native pH samples: (a) C_{16} -KFK, (b) C_{16} -KWK, (c) C_{16} -KYK.

SI Fig.S2. SAXS data at other pH values (a) C_{16} -KFK, (b) C_{16} -KWK, (c) C_{16} -KYK.

SI Fig.S3. ThT emission fluorescence spectra at concentrations (wt%) indicated, at native pH.
(a) C₁₆-KFK, (b) C₁₆-KWK, (c) C₁₆-KYK.

SI Fig.S4. ThT fluorescence peak intensity (I/I_0 , where I_0 is the peak intensity for the ThT only solution) assay to determine critical aggregation concentration (CAC) of the three lipopeptides, as indicated, at pH 8.

SI Fig.S5. CD spectra for 0.25 wt% samples, as indicated at pH = 8.

	C ₁₆ -KFK C ₁₆ -KWK		С ₁₆ -КҮК
	Bilayer+	Bilayer	Bilayer
	Long cylindrical		
	shell (for		
	nanotube)		
w_1	0.99	N/A	N/A
$r_H \pm \Delta r_H [\text{Å}]$	26.0 ± 2.4	27.0 ± 4.0	24.0 ± 2.0
$ ho_{ m H}$	7.12×10-7	7.08×10 ⁻⁷	6.42×10 ⁻⁷
$\sigma_{\! m H}[m \AA]$	4.0	5.7	6.4
$ ho_{ m C}$	1.08 ×10 ⁻⁶	-1.69 ×10-7	-9.82×10-8
$\sigma_{ m C}[{ m \AA}]$	6.3	10.0	10.0
D [Å] ^b	400	700	700
<i>w</i> ₂	0.01	N/A	N/A
<i>R</i> [Å]	376 ± 10		
<i>s</i> [Å]	38.0		
$ ho_{ m core}$	-1.38×10-7		
$ ho_{ m shell}$	7.51×10-7		
$ ho_{ m solv}{}^{ m b}$	1.00×10-8		
L ^b	500		
С	1.4×10-3	8×10-4	6×10-4

Table S1. Parameters extracted from the fitting of the SAXS data for 1 wt% solutions at pH 8.ª

^a Data fitted using the software SASfit.^{1,2}

^b Fixed Parameter

^c Additional overall scale factor applied to fit data

Key: Gaussian bilayer: layer thickness r_H (Gaussian polydispersity Δr_H), scattering contrast of outer (headgroup) layers ρ_H , and core (lipid chain) layer ρ_C , Gaussian widths σ_C and σ_H of core and headgroup layers respectively, D diameter (width) of layer system (when $D \gg t$ as here, it acts as a scaling parameter for the form factor). Long cylindrical shell: R core radius (Gaussian polydispersity Δt), s shell thickness, scattering contrasts of core ρ_{core} , shell ρ_{shell} and solvent ρ_{solv} , L length. Background: constant background, C. Weightings for two-component form factors, w_1 , w_2 .

Table S2. Calculated pKa values at pH 8 from H++.^{3, 4}

Moiety	WKK	KWK	ҮКК	КҮК
N terminus	6.7	6.7	6.7	6.8
Tyr			9.2	9.5
Lys-N	10.1	10.4	10.6	10.3
Lys-C	11.5	11.6	11.9	11.7
C terminus	1.9	1.8	1.8	1.9

Lys-N denotes N-terminal side lysine and Lys-C the C-terminal one.

References

- 1. I. Bressler, J. Kohlbrecher and A. F. Thünemann, *Journal of Applied Crystallography*, 2015, **48**, 1587-1598.
- 2. J. Kohlbrecher and I. Bressler, *Journal of Applied Crystallography*, 2022, **55**, 1677-1688.
- 3. J. C. Gordon, J. B. Myers, T. Folta, V. Shoja, L. S. Heath and A. Onufriev, *Nucleic Acids Res.*, 2005, **33**, W368-W371.
- 4. R. Anandakrishnan, B. Aguilar and A. V. Onufriev, *Nucleic Acids Res.*, 2012, **40**, W537-W541.