Supplementary Information for: Shape spectra of elastic shells with surface-adsorbed semiflexible polymers

Hadiya Abdul Hameed¹, Jaroslaw Paturej², and Aykut Erbas¹

¹UNAM – National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey

²Institute of Physics, University of Silesia at Katowice, Chorzów 41-500, Poland

1 Concentration of semiflexible chains, c

The concentration, c, of coarse-grained semiflexible chains inside the elastic shell is varied by changing the number of chains, N, within the elastic shell.

The absolute concentration, c in σ^{-3} , is calculated as

$$c = \frac{NN_{\rm sf}}{V} \tag{1}$$

where $N_{\rm sf}$ is the number of monomers per chain.

We also denote chain concentration in terms of bulk overlap concentration, c^*

$$c^* = \frac{N_{\rm sf}}{v} \tag{2}$$

where $v \approx l\sigma^3$ is the pervaded volume of each chain.

For $N_{\rm sf}=8$, the overlap concentration is as follows

$$c^* = \frac{8}{\frac{4}{3}\pi(4\sigma)^3} = 0.02984155183 \approx 0.03\sigma^{-3}$$
 (3)

where
$$N_{\rm sf} = 8$$
, $v = \frac{4}{3}\pi r^3$, $r = \frac{8\sigma}{2} = 4\sigma$

The concentrations probed for short chains (i.e., $l/R = 8/34 \approx 0.25$) are shown in Table S1. These correspond to the concentration range, $0.3c^* \le c \le 4.8c^*$.

Table S1: Number of semiflexible polymers, N, and concentrations, c, for $N_{\rm sf}=8$.

N	$c(\sigma^{-3})$	c/c^*
250	0.01	0.3
750	0.03	1.0
1250	0.06	2.0
2000	0.097	3.3
3000	0.15	4.8

Since the pervaded volume of the chain, v, increases with decreasing chain length, $l=N_{\rm sf}\sigma$, the overlap concentration, c^* , decreases. For example, for $N_{\rm sf}=32$, the overlap concentration is

$$c^* = \frac{32}{\frac{4}{3}\pi (16\sigma)^3} \approx 0.002\sigma^{-3} \tag{4}$$

where
$$N_{\rm rod} = 32$$
, $v = \frac{4}{3}\pi r^3$, $r = \frac{32\sigma}{2} = 16\sigma$

The overlap concentrations, and respective absolute concentrations in terms of c^* for various l/R discussed in the main text are shown in Table S2.

Table S2: Overlap concentrations, and normalized concentrations for various chain lengths, where $R \approx 34\sigma$.

$N_{ m sf}$	l/R	c^*	$c/c^*(c = 0.06\sigma^{-3})$	$c/c^*(c=0.1\sigma^{-3})$
8	0.25	0.03	2.0	3.3
16	0.5	0.007	8.0	13.4
24	0.7	0.003	18.1	30.1
32	1.0	0.002	32.2	53.7
48	1.4	0.0008	72.4	120.6
64	2.0	0.0005	128.7	214.5

Normalized asphericity, A_{norm} The normalized asphericity, A_{norm} , is a normalized version of asphericity, A (see main text). A is normalized as follows

$$A_{\text{norm}} = \frac{A}{R_{\text{g}}^2} = \frac{\lambda_1 - \frac{1}{2}(\lambda_2 + \lambda_3)}{R_{\text{g}}^2}$$
 (5)

where λ_1 , λ_2 , and λ_3 are eigenvalues of the gyration tensor of the elastic shell, S, and $R_{\rm g}$ is the radius of gyration of the shell (see main text). Dividing by $R_{\rm g}^2$ makes $A_{\rm norm}$ dimensionless, meaning that it eliminates the effect of shell size on asphericity.

The parameter A_{norm} ranges from 0 to 1: it equals 0 for perfectly symmetric (e.g., spherical) shells and approaches 1 for highly distorted shapes. In our system, A_{norm} falls within the range $0 < A_{\text{norm}} \le 0.2$, where $A_{\text{norm}} \approx 0.2$ corresponds to $A \ge 100$.

3 Shape anisotropy, κ

The relative shape anisotropy, κ , is a dimensionless measure that captures both the symmetry and dimensionality of a shape \square . It is defined as

$$\kappa = 1 - \frac{3(\lambda_1 \lambda_2 + \lambda_2 \lambda_3 + \lambda_3 \lambda_1)}{(\lambda_1 + \lambda_2 + \lambda_3)^2} \tag{6}$$

where λ_1 , λ_2 , and λ_3 are eigenvalues of the gyration tensor of the elastic shell, S (see main text).

The parameter κ ranges from 0 to 1: it equals 0 for perfectly symmetric (e.g., spherical) conformations and approaches 1 for elongated, linear structures. For planar symmetric configurations, κ typically converges to 1/4.

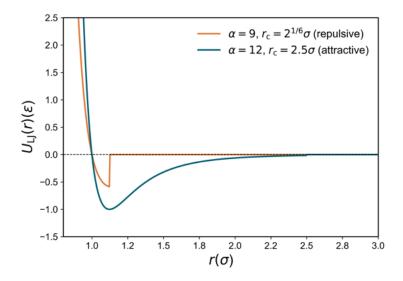


Figure S1: A shifted and truncated Lennard-Jones (LJ) potential describes all attractive and repulsive interactions (Eqn. 1 in main text). For repulsive flexible chains at the interior, we set the cutoff distance, $r_c = 2^{1/6}\sigma$ and exponent $\alpha = 9$ (orange curve). For attractive semiflexible chain-shell interactions, $U_{\rm RS}$, $r_c = 2.5\sigma$ and exponent $\alpha = 12$ (blue curve)

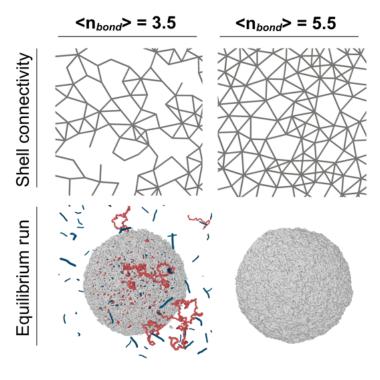


Figure S2: Decreasing shell connectivity to $\langle n_{\rm bond} \rangle = 3.5$ ($\langle n_{\rm bond} \rangle = 5.5$ in the main text) leads to the escape of shell contents during equilibrium run due to large mesh spaces.

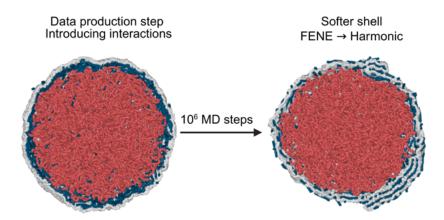


Figure S3: Replacing FENE bonds with harmonic springs to generate a softer shell configuration. These simulations are run for 10^6 MD time steps.

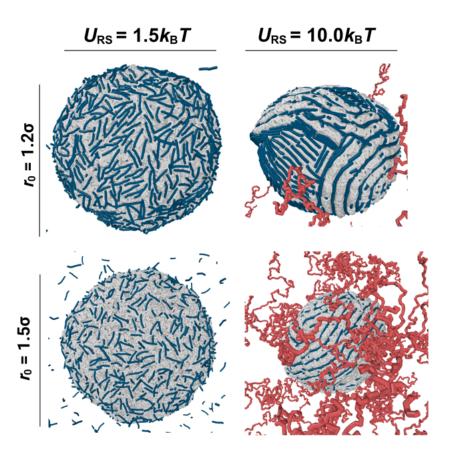


Figure S4: Reducing the cutoff distance, r_0 , is required to prevent the escape of the shell contents to the exterior.

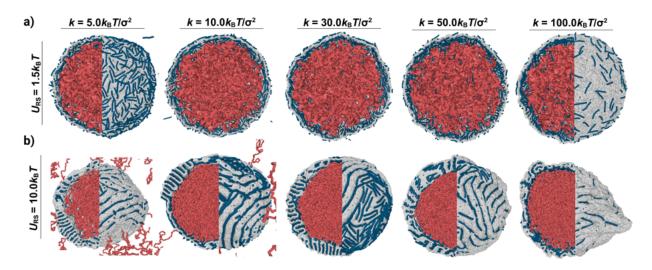


Figure S5: Effect of varying the **harmonic** shell stiffness parameter, k, over the range $5.0k_{\rm B}T/\sigma^2 \le k \le 100.0k_{\rm B}T/\sigma^2$, under **a)** weak and **b)** strong adsorption regimes.

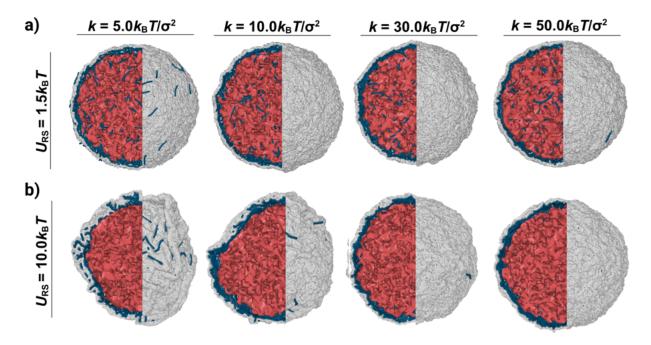


Figure S6: Effect of varying the **FENE** shell stiffness parameter, k, over the range $5.0k_{\rm B}T/\sigma^2 \le k \le 50.0k_{\rm B}T/\sigma^2$, under **a)** weak and **b)** strong adsorption regimes.

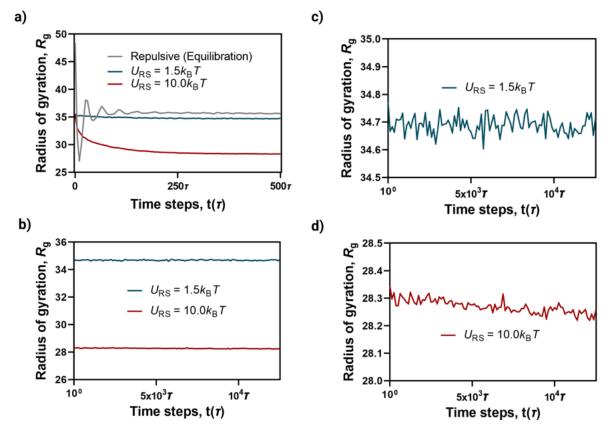


Figure S7: Radius of gyration of the shell $(R_{\rm g})$ fluctuates within $\leq 0.25\sigma$ over simulation time for both equilibration and data production runs (see Fig. 1c), indicating quasi-equilibrium. (a) $R_{\rm g}$ as a function of simulation time for the equilibration step (500τ) and the first 500τ of data production runs for strong $(U_{\rm RS}=10.0k_{\rm B}T)$ and weak $(U_{\rm RS}=1.5k_{\rm B}T)$ adsorption. (b) $R_{\rm g}$ as a function of simulation time for the data production step $(1.25\times10^4\tau)$. Zoomed in graphs of $R_{\rm g}$ vs. time steps for c) weak $(U_{\rm RS}=1.5k_{\rm B}T)$ and d strong $(U_{\rm RS}=10.0k_{\rm B}T)$ adsorption.

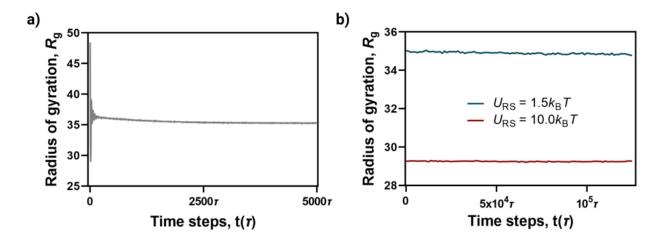


Figure S8: Radius of gyration of the shell $(R_{\rm g})$ fluctuates within $\leq 0.25\sigma$ over longer simulation time, indicating our original simulation time is sufficient for equilibration. **a)** $R_{\rm g}$ as a function of simulation time for the equilibration step (5000 τ). **(b)** $R_{\rm g}$ as a function of simulation time for the data production step $(1.25 \times 10^5 \tau)$.

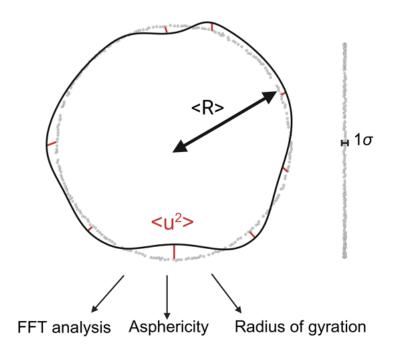


Figure S9: Analysis methods used to characterize shell shape anomalies in the main text.

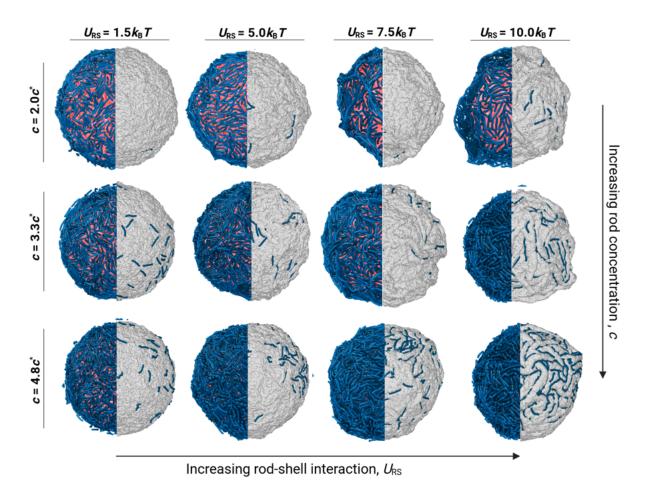


Figure S10: Exterior simulation snapshots, shell removed (right) and shell exterior(left), for various rod concentrations and $U_{\rm RS}$. Shape distortions increase with increasing $U_{\rm RS}$ and above the overlap concentration, $c>c^*$.

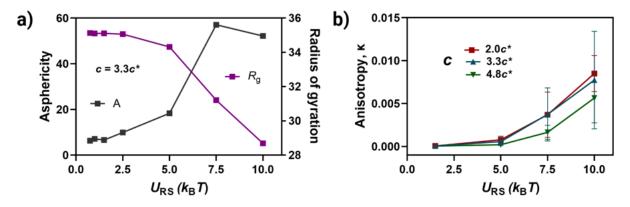


Figure S11: a) Radius of gyration decreases and asphericity increases with increasing rod-shell interaction strength, $U_{\rm RS}$, at high rod concentration, $c\approx 0.1\sigma^{-3}$. b) Shape anisotropy increases as a function of $U_{\rm RS}$ with increasing chain concentration.

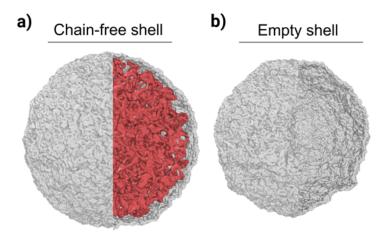


Figure S12: **a)** Two-component shell (i.e., without semiflexible chains) remains swollen (i.e., $R_{\rm g} \approx 34\sigma$. **b)** Removing flexible polymer chains from the interior can also lead to crumpling and decreased size of the shell.

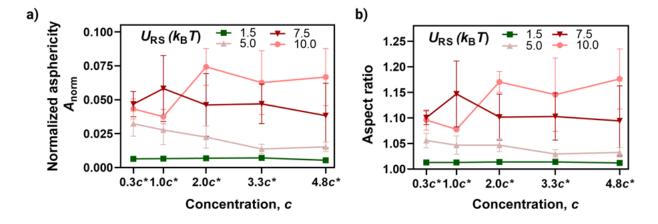


Figure S13: **a)** Normalized asphericity, A_{norm} , and **b)** aspect ratio as a function of semiflexible chain concentration, c.

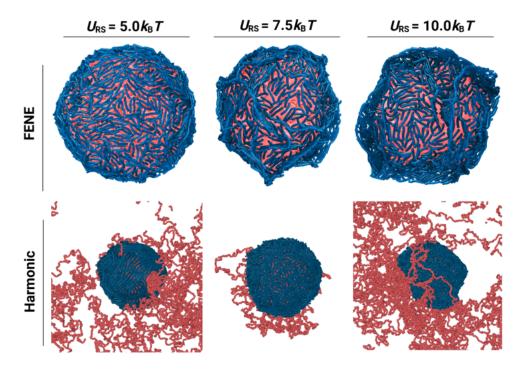


Figure S14: The elastic shell collapses inwards and polymer escapes under strong localization ($U_{\rm RS}=5.0,7.5$ and $10.0k_{\rm B}T$) when shell bonds are switched from FENE to extensible harmonic ones.

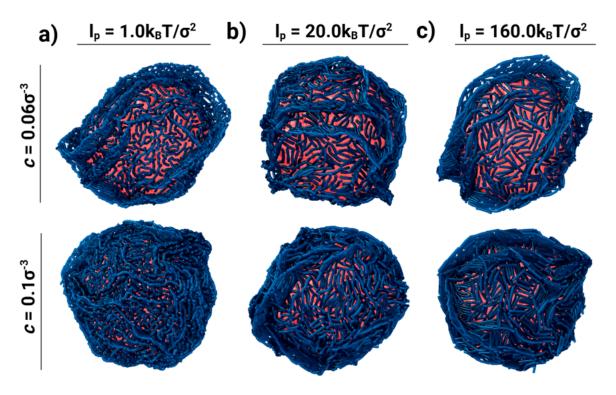


Figure S15: Distorted shapes under strong localization ($U_{RS} = 10.0k_BT$) are independent of the persistence of the chain, l_p at high concentrations, $c > c^*$.

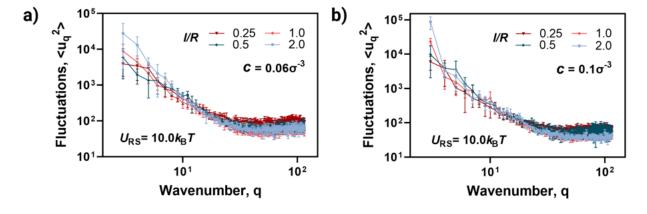


Figure S16: Fluctuation amplitudes do not vary significantly with increasing chain length, l/R, at high concentrations, $c>c^*$. Rod-shell attraction is also fixed to high, $U_{\rm RS}=10.0k_{\rm B}T$.

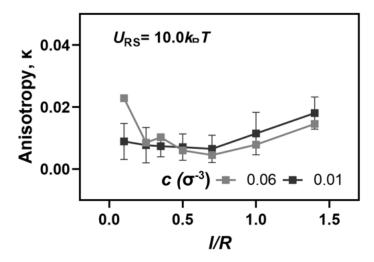


Figure S17: Anisotropy remains largely constant with increasing l/R under strong localization, $U_{\rm RS}=10.0k_{\rm B}T$.

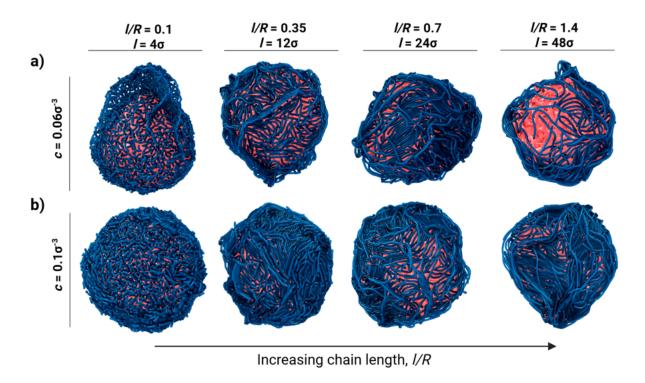


Figure S18: Simulation snapshots for distorted shell shapes at l/R=0.1, 0.35, 0.7, and 1.4 under strong localization, $U_{\rm RS}=10.0k_{\rm B}T$. High concentrations ($c>c^*$) are chosen: $c\approx {\bf a}$) 0.06 and ${\bf b}$) $0.1\sigma^{-3}$.

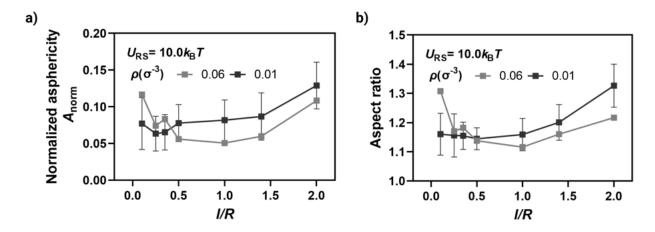


Figure S19: a) Normalized asphericity, $A_{\rm norm}$, has larger error bars with increasing chain length, l/R. b) Aspect ratio exhibits slight increase with increasing l/R under strong localization, $U_{\rm RS}=10.0k_{\rm B}T$.

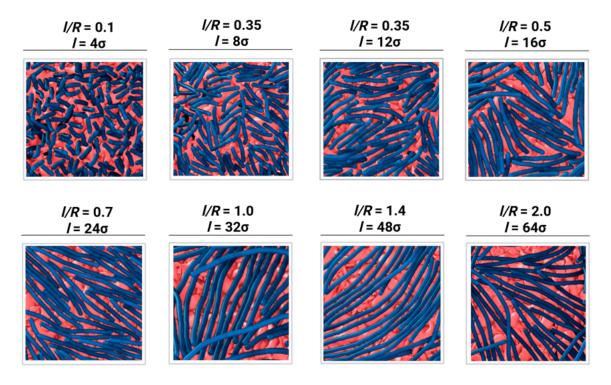


Figure S20: Organized domains emerge on the surface with increasing contour length-toradius ratio, l/R, under weak localization, $U_{\rm RS}=1.5k_{\rm B}T$, even at lower absolute concentrations, $c\approx 0.06\sigma^{-3}$. This also corresponds to $c>c^*$.

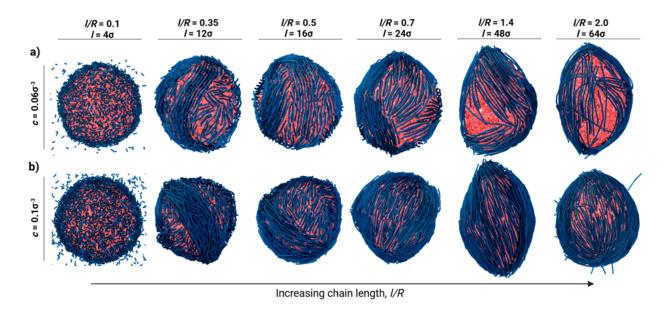


Figure S21: Shell elongates with increasing l/R under weak localization when shell bonds are switched from FENE to harmonic, irrespective of chain concentration (i.e., $c \approx \mathbf{a}$) 0.06 and **b**) $0.1\sigma^{-3}$).

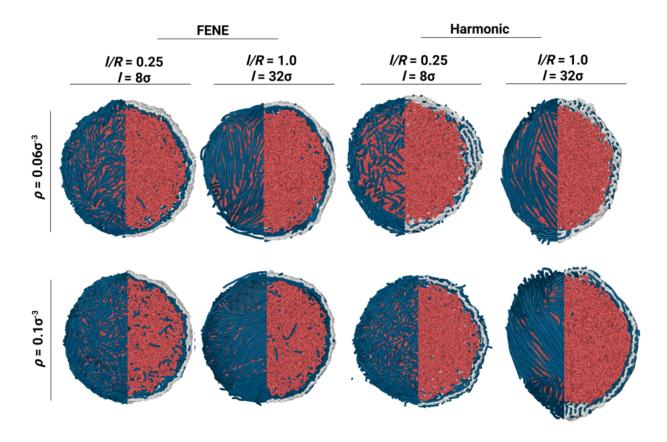


Figure S22: Exterior and interior cross-sections of the simulations discussed in Fig. 5 of the main text

References

[1] H. Arkın and W. Janke, The Journal of Chemical Physics, 2013, 138,.