Supplementary Information

Preparation of functional Zein/Spirulina protein isolate nanocomposite particles for improved encapsulation of glabridin

Jie Mei^a, Chen Li^b, Beizhe Chang^a, Xiaomin Li^a, Yunxing Li^{a*}, Bingtian Zhao^a, Cheng Yang^{a*}, To Ngai^{c*}

- ^a Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China. E-mail: yunxingli@jiangnan.edu.cn; cyang@jiangnan.edu.cn
- ^b School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi 653100, China.
- ^c Department of Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China. E-mail: tongai@cuhk.edu.hk

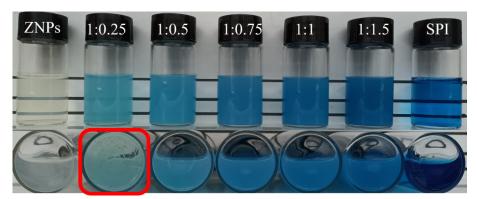


Figure S1. Visual appearance of the aqueous dispersions of zein nanoparticles (ZNPs) and Zein/SPI nanocomposite particles with different mass ratios, as well as the SPI solution. Visible sediments were observed in the aqueous dispersion of Zein/SPI nanocomposite particles with a mass ratio of 1:0.25.

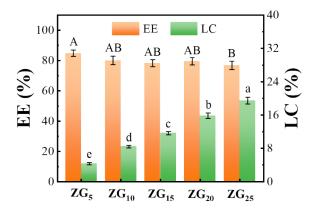


Figure S2. EE and LC of GLA-loaded ZNPs (ZG) prepared with different concentrations of GLA. Different letters represent significant differences (p < 0.05).

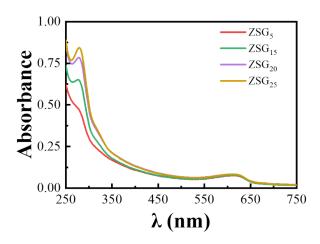


Figure S3. UV-vis spectrum of ZSG₅, ZSG₁₅, ZSG₂₀ and ZSG₂₅

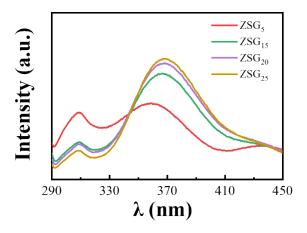


Figure S4. Fluorescence spectrum of ZSG₅, ZSG₁₅, ZSG₂₀ and ZSG₂₅.

Figure S5. Visual appearance of aqueous dispersions of ZG_{10} under different pH (a), effect of pH on the average diameter and zeta potential of ZG_{10} (b). Different letters represent significant differences (p < 0.05). Visible sediments were observed in the aqueous dispersions of ZG_{10} at pH of 6 and 7.

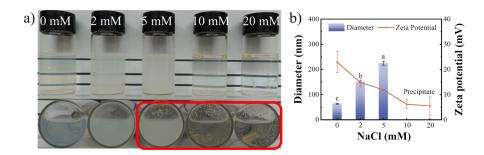


Figure S6. Visual appearance of aqueous dispersions of ZG_{10} under different concentration of NaCl (a), effect of NaCl on the average diameter and zeta potential of ZG_{10} (b). Different letters represent significant differences (p < 0.05). Visible sediments were observed in the aqueous dispersions of ZG_{10} at salt concentrations of 5, 10, and 20 mM.

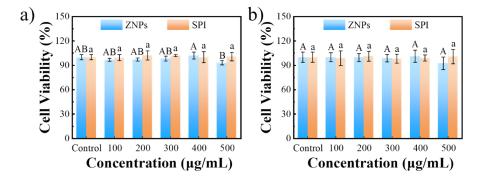


Figure S7. Cell viability of HaCaT cells (a), and NCM-460 cells (b) treated with different concentrations of ZNPs and SPI, respectively. Different letters represent significant differences (p < 0.05).

Figure S8. Visual appearance of aqueous dispersion of ZG_{10} after releasing for 12 h