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SI 1. Detailed LAOS rheology methodology 
 

Small Amplitude Oscillatory Shear (SAOS). In the LVE zone, the shear stress response to a sinusoidal 
strain also takes a sinusoidal signal  τ(t) = τ0sin (ωt + δ), where τ0 is the shear stress response 
amplitude and δ is the phase shift (also referred to as the loss angle). The storage modulus G’ (real part 
of G∗(t)) and the loss modulus G’’ (imaginary part of G∗(t)), as well as the loss factor tan (δ), can be 

determined from the complex shear modulus G∗(t) = τ(t)
γ(t)

. The LVE zone is characterized by a plateau 

in the storage modulus G’ at small strain amplitudes and displays the intrinsic rheological properties of 
the samples.1 

Large Amplitude Oscillatory Shear (LAOS). Exiting the LVE zone is associated with a decrease in 𝐆𝐆’ 
and 𝐆𝐆’’, indicating that the material begins to deform.2 In this non-linear zone, the stress response to a 
sinusoidal strain signal is no longer sinusoidal.3 In the frequential domain, it implies that, in addition to 
the fundamental frequency, higher harmonics begin to affect the signal. In this case, the shear stress 
response takes the form 𝛕𝛕(𝐭𝐭) = ∑ 𝛕𝛕𝐧𝐧∞

𝐧𝐧=𝟏𝟏 𝐬𝐬𝐬𝐬𝐬𝐬(𝐧𝐧𝐧𝐧𝐧𝐧 + 𝛅𝛅𝐧𝐧), where 𝐧𝐧 represents higher-order harmonics, 
𝛕𝛕𝐧𝐧 and 𝛅𝛅𝐧𝐧 are the corresponding amplitudes and phase angles of the shear stress response, respectively, 
and 𝛚𝛚 is the pulsation of the applied oscillatory strain (𝛚𝛚 = 𝟐𝟐𝟐𝟐𝟐𝟐, where 𝐟𝐟 is the frequency).  

In this study, we focus on the first and third harmonics of the stress response. Indeed, the magnitudes 
of the higher-order harmonics are negligible and even-order harmonics have a magnitude of zero due to 
the rotational symmetry of the experiment. However, it is noteworthy that some studies have indicated 
that a non-zero value for the second-order harmonic magnitude may serve as an indicator for slippage 
or of imperfect alignment of the plates of the rheometer, and can also be associated with instrument 
noise.3,4 

 
Several techniques were developed to analyze and interpret the non-sinusoidal shear stress response. 

For qualitative interpretation, Lissajous-Bowditch curves are often useful to catch the effect of frequency 
and amplitude on the non-linear response. Strain-stress curves characterize elastic contribution to the 
non-linear response while strain rate-stress curves reveal the viscous contribution.5 The shape of these 
Lissajous-Bowditch curves allows for a visual interpretation of the non-linear behavior in terms of shear-
thinning or shear-thickening, as well as strain-softening or strain-stiffening.5,6 For a quantitative 
interpretation, the most common technique is the Fourier Transform (FT) rheology. The non-linear stress 
response can be developed in a Fourier series according to Eq.1, with G′n and G′′n the Fourier 
coefficients. This method allows to express the time-dependent stress response into a Fourier space, 
displaying the amplitudes and phases of the periodic contributions as a function of frequency.7 

τ(t) = γ0� G′n(ω, γ0)
∞

n=1

sin(nωt) + G′′n(ω, γ0) cos(nωt) 

, where n is an odd integer 
(1) 

 

By analyzing the evolution of higher-order harmonic contributions relative to the fundamental 
frequency, it is possible to compare the non-linear response of different lipsticks.7,8 To provide a physical 
insight into the quantitative non-linear behavior of the studied material and analyze the intracycle non-
linearities, the Chebyshev decomposition derived from the Fourier coefficients is employed. As 
expressed in Eq. 2, the Chebyshev coefficients describe the intracycle changes in the elastic and viscous 
properties by mathematically representing the nonlinear shape of the stress response. 9–11 Nevertheless, 
the Chebyshev decomposition raises difficulty of physical interpretation due to potential singularities 
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inherent in its mathematical definition. To better capture non-linearities, a strain-stiffening ratio S (Eq. 
3) and a shear-thickening ratio T (Eq. 4), based on the Chebyshev coefficients, were further proposed 
by Ewoldt et al.5 These ratios can also be determined from the Lissajous-Bowditch curves and 
interpreted in terms of non-linear behavior. A positive S value indicates strain-stiffening, whereas a 
negative S value signifies strain-softening. Similarly, a positive T value denotes shear-thickening, while 
a negative T value indicates shear-thinning. 

 

S =
4e3 + ⋯

e1 + e3 + ⋯
=

GL
′ − GM

′

GL
′  (3) 

and 

T =
4v3 + ⋯

v1 + v3 + ⋯
=
ηL′ − ηM′

ηL′
 (4) 

 

Where e1 and e3 are the first order and third order elastic Chebyshev coefficients, respectively. GM′  is 
the minimum-strain modulus or tangent modulus at minimum strain and GL′  is the large-strain modulus 
or secant modulus at the maximum strain. v1 and v3 are the first order and third order viscous Chebyshev 
coefficients, respectively. ηM′  is the local viscosity at the minimum shear rate or tangent modulus at 
minimum shear rate and ηL′  is the local viscosity at the maximum shear rate or secant modulus at 
maximum shear rate, both measured at a specific time point of the oscillation cycle.12  
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4 
 

SI 2. Microstructure and its influence on rheological behavior 
 

A strong link between microstructure and viscoelastic moduli was observed across the three 
lipstick grades. Under rapid cooling conditions, the microstructure in characterized by small crystals 
densely packed in small aggregates, leading to a larger storage modulus. In contrast, slow cooling results 
in the formation of larger crystals arranged into loosely connected aggregates, causing a significant 
reduction in both storage and loss moduli. These findings confirm that a dense network, composed of 
interconnected small crystals, enhances the rheological properties, yielding increased stiffness (Figure 
SI2.1).  

 

 

 
Figure SI2.1.  Rheological oscillatory strain amplitude sweeps at 20 °C of LS-1, LS-2 and LS-3 samples (top to 

bottom) subjected to three cooling rates 0.1 °C. min−1 (circles), 1 °C. min−1 (triangles) and 10 °C. min−1 
(squares) and corresponding LC-PolScope micrographs. 
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SI 3. Fourier-Transform Rheology - Spectral representation of the contribution of 
additional harmonics  

 

As a material enters its NLVE zone, its stress response to a sinusoidal strain solicitation is no 
longer purely sinusoidal. In this regime, additional harmonics begin to emerge. The L-B curves reflect 
these new contributions to the material’s behavior, typically including the third harmonic and, in some 
cases, the fifth harmonic as well. Even-order harmonics, however, do not contribute due to the symmetry 
of the experimental setup. To perform a quantitative analysis of the LAOS stress response, we convert 
the temporal signal into a Fourier space and examine the contribution of additional harmonics in a 
spectral representation, as shown in Fig. SI3.1 for γ = 7 × 10−2. 

 

 

Figure SI3.1. Spectral representation of the contribution of additional harmonics to the stress response 
signal in Fourier space, at a frequency of 1 Hz and a strain of 7 × 10−2. The magnitudes of the harmonics 
are normalized to the magnitude of the fundamental which is normalized to one. 
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SI 4. Comparison of rheological models  

 

A KWW function-based creep model was selected to describe the rheological behavior of 
lipsticks in the linear regime (EqSI4.7).  

We also considered less complex models during model development, including a simple Burgers 
model comprising a Maxwell element and a single Kelvin-Voigt element in series (EqSI4.1) as well as 
a generalized Burgers model, consisting of a Maxwell element in series with two Kelvin-Voigt elements 
(EqSI4.2), and the Zener model, also known as Standard linear solid model, comprising a Maxwell 
element in parallel with a spring (EqSI4.4). However, qualitative analysis of the model fits revealed that 
these models provide a significantly poorer fit, particularly at short timescales.  

Quantitatively, all alternative models resulted in Root Sum of Squares (RSS) errors larger than 
that of the KWW creep model (Tab. SI4) while employing a greater number of parameters, indicating 
their inadequacy in accurately capturing the response to loading. Additionally, we evaluated the three-
relaxation-time generalized Burgers model (EqSI4.3), but the inclusion of an extra discrete relaxation 
time did not yield significant improvement in fit quality, as shown by the RSS errors in Tab. S4. The 
Maxwell fractional model (EqSI4.5) could not capture the creep behavior either. We observe that the 
KWW model is improved when a viscosity term is added to the creep compliance equation. The residuals 
from fitting the two-relaxation-time Burgers model and the KWW-based model are plotted in Figure 
SI4.8. 

 

Burgers model:  
 

J(t) =
1

G0
+

1
G1
�1 − e−

G1t
η1 �+

t
η0

 

 

(Eq SI4.1) 

Two-relaxation-time generalized Burgers model:  
 

J(t) =
1

G0
+

1
G1
�1− e−

G1t
η1 �+

1
G2
�1 − e−

G2t
η2 �+

t
η0

 

 

(Eq SI4.2) 

Three-relaxation-time generalized Burgers model:  
 

J(t) =
1

G0
+

1
G1
�1− e−

G1t
η1 �+

1
G2
�1 − e−

G2t
η2 �+

1
G3
�1 − e−

G3t
η3 �+

t
η0

 

 

(Eq SI4.3) 

Zener model:  
 

J(t) =
1

G0
+ �

1
G1

−
1
𝐺𝐺0
��1 − e−

G1t
η1 � 

 

(Eq SI4.4) 

Fractional Maxwell model: 
 

J(t) =
1
𝐺𝐺

+
𝑡𝑡𝛼𝛼

𝜂𝜂𝛼𝛼Γ(1 + 𝛼𝛼)
 

 

(Eq SI4.5) 
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KWW model or stretched exponential creep model, without viscosity term: 
 

J(t) =
1

G0
+

1
G1
�1− e−�

t
𝜏𝜏�

𝛽𝛽

� 

 

(Eq SI4.6) 

  
KWW model or stretched exponential creep model, with viscosity term: 

 

J(t) =
1

G0
+

1
G1
�1 − e−�

t
𝜏𝜏�

𝛽𝛽

�+
t
η0

 

 

(Eq SI4.7) 

 

 

 
Figure SI4.1. Creep compliance curves under a 250 Pa shear stress, fitted using the Burgers model. The full-

time response is shown (left), along with a zoomed-in view of the short-time response (right). Experimental data 
are shown with empty markers, while solid lines represent model predictions. Dashed lines show the residuals. 

 

 
Figure SI4.2. Creep compliance curves under a 250 Pa shear stress, fitted using the two-relaxation-time 

generalized Burgers model. The full-time response is shown (left), along with a zoomed-in view of the short-
time response (right). Experimental data are shown with empty markers, while solid lines represent model 

predictions. Dashed lines show the residuals. 
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Figure SI4.3. Creep compliance curves under a 250 Pa shear stress, fitted using the three-relaxation-time 

generalized Burgers model. The full-time response is shown (left), along with a zoomed-in view of the short-
time response (right). Experimental data are shown with empty markers, while solid lines represent model 

predictions. Dashed lines show the residuals. 

 

 
Figure SI4.4. Creep compliance curves under a 250 Pa shear stress, fitted using the Zener model. The full-time 
response is shown (left), along with a zoomed-in view of the short-time response (right). Experimental data are 

shown with empty markers, while solid lines represent model predictions. Dashed lines show the residuals. 

 

 
Figure SI4.5. Creep compliance curves under a 250 Pa shear stress, fitted using the Fractional Maxwell model. 

The full-time response is shown (left), along with a zoomed-in view of the short-time response (right). 
Experimental data are shown with empty markers, while solid lines represent model predictions. Dashed lines 

show the residuals. 
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Figure SI4.6. Creep compliance curves under a 250 Pa shear stress, fitted using the Kohlrausch Williams Watt 
(KWW) model (without viscosity term). The full-time response is shown (left), along with a zoomed-in view 
of the short-time response (right). Experimental data are shown with empty markers, while solid lines represent 

model predictions. Dashed lines show the residuals. 

 

 

Figure SI4.7. Creep compliance curves under a 250 Pa shear stress, fitted using the Kohlrausch Williams Watt 
(KWW) model (with viscosity term). The full-time response is shown (left), along with a zoomed-in view of 
the short-time response (right). Experimental data are shown with empty markers, while solid lines represent 

model predictions. Dashed lines show the residuals. 

 

  

Figure SI4.8. Residuals from fitting the two-relaxation-time Burgers model (left) and the KWW-based model 
with a viscosity term (right) to the creep compliance data. The smaller residuals for the KWW model indicate a 

better fit and improved description of the material’s relaxation behavior. 
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Table SI4. Root Sum of Squares (RSS) errors obtained from fitting the simple Burgers model, the two-relaxation-
time generalized Burgers model, the three-relaxation-time generalized Burgers model, the Zener model, the 
fractional Maxwell model, and the KWW creep model (with and without a viscosity term) to samples LS-1, LS-2 
and LS-3 

 
Number of 
parameters 

LS-1 LS-2 LS-3 

Burgers Model – RSS 
Error 

4 1.9 × 10−6 1.3 × 10−6 3.1 × 10−6 

Two-relaxation-time 
Generalized Burgers 
Model – RSS Error 

6 4.6 × 10−7 5.2 × 10−7 4.8 × 10−7 

Three-relaxation-time 
Generalized Burgers 
Model – RSS Error 

8 3.2 × 10−7 4.2 × 10−7 5.0 × 10−7 

Zener Model – RSS 
Error 

3 4.3 × 10−6 2.6 × 10−6 1.2 × 10−6 

Fractional Maxwell 
model – RSS Error 

3 2.8 × 10−6 2.2 × 10−6 3.0 × 10−7 

KWW model (no 
viscosity) – RSS Error 

3 4.3 × 10−7 3.1 × 10−7 2.9 × 10−7 

KWW model (with 
viscosity) – RSS Error 

4 𝟑𝟑.𝟕𝟕× 𝟏𝟏𝟏𝟏−𝟕𝟕 𝟐𝟐.𝟗𝟗× 𝟏𝟏𝟏𝟏−𝟕𝟕 𝟐𝟐.𝟕𝟕 × 𝟏𝟏𝟏𝟏−𝟕𝟕 
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SI 5. Inventory of raw data corresponding to figures 

 

Figure Data File Name Description 
Figure 5 Experimental data (numerical values) 

ampsweep_depending_on_cooling_rate.csv 
Raw rheological measurements 
(amplitude sweeps) of the three 
samples cooled at three different 
cooling rates (0.1 °C. min−1, 
1 °C. min−1 and 10 °C. min−1). 

Figure 7 Experimental data (numerical values) 
ampsweep_1Hz.csv 
ampsweep_1Hz_2.csv 

Raw rheological measurements 
(strain amplitude sweeps) of the 
three samples at 1 Hz and room 
temperature. 

Figure 8 Experimental data (numerical values) 
Freqsweep.csv 
Freqsweep_2.csv 

Raw rheological measurements 
(frequency sweeps) of the three 
samples at 0.01% strain amplitude 
and room temperature. 

Figure 12 Experimental data (numerical values) 
Creep_recovery_strain.csv 
Creep_recovery_strain_2.csv 
 

Raw creep and recovery strain 
measurements of the three samples 
under 250 Pa stress and at room 
temperature. 

Figure 13 Experimental data (numerical values) 
Creep_recovery_Compliance.csv 
Creep_recovery_Compliance_2.csv 
 
Python code for model fitting 
KWW_creep_model.py 

Raw creep and recovery compliance 
measurements of the three samples 
under 250 Pa stress and at room 
temperature. 
Python code used to fit the KWW 
based creep model to the 
experimental data, developed 
specifically for this study. 

Figure 14 Experimental data (numerical values) 
Compression_data_14a_10µms.csv 
Compression_data_14a_10µms_2.csv 
Compression_data_14b_5000µms.csv 
Compression_data_14b_5000µms_2.csv 

Raw uniaxial compression 
measurements of the three samples 
at room temperature and at two 
different compression rates (10 µm/s 
and 5000 µm/s). 

Figure 15 Video files  
LS-1_compression.gif 
LS-2_compression.gif 
LS-3_compression.gif 

Videos of the compression 
measurements and cracking of the 
three samples at room temperature 
and at a 10 µm/s compression rate. 
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