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Thomas C. Merlette1,2, Jérôme Hem1, Caroline Crauste-Thibierge1, Sergio
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I. Additional simulation results

In this section, additional simulation results are displayed where some model

parameters values were changed (µ2 and 1
R
) or the waiting time was in-

creased (up to 100 s). The simulations presented in this section were per-

formed with a time step δt = 10−3s, whereas the value of δt = 10−4s was

used for all other simulations in the current manuscript.
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I.1. Influence of model parameters µ2 and 1
R

Figure S1 shows simulation results during protocol II with different values

for parameters µ2 and
1
R
, where the waiting step was performed at ε0 = 0.75.

In (a), stress-strain curves during the second tension are plotted whereas

in (b), the time evolution of < Tr
(
q
∼
2
)
> (normalized) during the wait-

ing step is displayed. Note that in (b), the relative average orientation is

plotted instead of the average orientation itself, so that the different curves

start from 1 and can be compared on the same graph. The waiting step

lasts for 10s.

µ2 relates orientation to the free energy barrier increase according to equa-

tion 7, whereas 1
R
sets the restoring force which drives orientation back to

zero as in equations 7 of the manuscript. As discussed in,1 strain hardening

during a uniaxial tension or compression performed on an isotropic system

is less pronounced when either µ2 decreases or 1
R
increases. It can be seen

on figure S1 (a) that in this case, strain hardening is less pronounced also

during the second tension of protocol II. The reference values µ2 = 300 and

1
R

= 0.1 (black curve) were used for simulations presented in the current

manuscript as well as in1 unless specifically stated.

For the sets of parameters {µ2 = 100, 1
R
= 0.1} and {µ2 = 300, 1

R
= 0.17},

no strain hardening is observed as can be seen in figure S1 (a). Those cor-

respond to the only two situations where average orientation relaxes during

the waiting step among the displayed results (figure S1 (b)): < Tr
(
q
∼
2
)
>

relaxes by about 25% for 1
R
= 0.17 and 40% for µ2 = 100 and would con-

tinue to slightly decrease if the waiting step lasted longer. However, it must

be noted that the values of < Tr
(
q
∼
2
)
> at the beginning of the waiting
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Figure S1: (a) Evolution of stress as a function of strain during the second
tension of protocol II, i.e. after a first tension up to a given prestrain
ε0 = 0.75 followed by a 10 seconds waiting step. (b) Evolution of average
orientation (normalized with the initial value) with waiting time tw during
the waiting step. The tensile test simulations are performed at 345 K and
0.1 s−1 along the same direction. Several curves are plotted, corresponding
to different values of µ2 (curves with open square symbols) and 1

R
(curves

with solid circle symbols). The black curve corresponds to the one with the
”standard” values µ2 = 300 and 1

R
= 0.1. The 2 curves showing orientation

relaxation (red and cyan) correspond to low initial values of < Tr
(
q
∼
2
)
>,

for which no strain hardening occurs.
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step, not displayed here, are very low (∼ 2.5 10−3 for µ2 = 100 and ∼ 2 10−3

for 1
R
= 0.17).

Strain hardening and orientation relaxation during the waiting step are

thus strongly correlated. Whenever the parameters lead to strain harden-

ing, < Tr
(
q
∼
2
)
> does not relax (or not significantly) during the waiting

step. This quantity only relaxes when no or very little strain hardening

is observed. This is due to strain hardening being the consequence of a

fraction of highly-oriented regions whose internal dynamics is significantly

slowed down. Whenever the model parameters enable Kuhn segments orien-

tation to take place for a large enough fraction of subunits, strain hardening

occurs as explained in.1 At this point, orientation does not relax ”by itself”

in those regions during the waiting step because the facilitation mechanism

is no longer effective, as explained in section IV of the current manuscript.

On the other hand, considering a situation where orientation indeed relaxes

during the waiting step requires the local free energy barriers to be only

poorly increased (or not increased at all) by local orientation: in this case,

strain hardening does not occur (or has not occurred yet).

Therefore, the theory predicts that orientation < Tr
(
q
∼
2
)
> does not

relax within experimental timescales whenever strain hardening is observed.

It does relax when strain hardening is absent, but in this situation the the-

ory predicts that the average value of Kuhn segment orientation is very

small. The parameter range in which strain hardening occurs and orienta-

tion relaxes within the experimental time frame, if it exists, is very narrow
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and hard to identify.

I.2. Influence of a large waiting time

In the core manuscript, no (or very slight) overshoot was observed for tanδ.

Such an overshoot can be observed in experiments when the waiting time

is large enough, and is more evident when the waiting step takes place at

small strain values.2

Simulations were run with a waiting step that lasted for 100s at 2 dif-

ferent strain values, 25% and 50%, with the reference values for model

parameters (µ2 = 300 and 1
R

= 0.1). Results are displayed in figure S2.

The evolution of stress (a),
〈
Tr(q

∼
2)
〉
(b) and tan(δ) (c) are plotted as a

function of strain during the entire protocol (except for the waiting step

which is only displayed in (a)).

Description of subfigures (a) and (b) does not differ from that of figures

6 (a) in the manuscript and figure S1 of the SI: the stress overshoot is very

pronounced here because the system could age significantly during the long

waiting step, and orientation does not relax during this waiting step.

In figure S2 (c), tan(δ) during the second tension overshoots the reference

curve (i.e. without the waiting step), especially for small strain values ε0 at

which the waiting step is performed. The overshoot is clear for ε0 = 0.25,

it is less pronounced (but still exists) for ε0 = 0.5 and it is very slight for

ε0 = 0.75. It is probable that if the waiting time was larger (say 1000s), the

overshoot would be more pronounced and that one could also be observed

at very higher strain values such as 0.75.
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Figure S2: (a) Evolution of stress (a), average orientation (b) and tanδ (c)
as a function of strain during the second tension of protocol II. The different
curves correspond to different strain values ε0 where a waiting step of 100s
was performed (ε0 = 0.25, 0.5 and 0.75). The reference parameters values
are used (µ2 = 300 and 1

R
= 0.1). Simulations were performed with a time

step of δt = 10−3s.

Therefore, the theory can predict also an overshoot for the dynamical

response (tan(δ)) which is due to the significant aging of the glassy polymer

during the waiting step.
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I.3. Evolution of the relaxation times distribution be-

fore strain hardening

The evolution of the DRT (distribution of relaxation times) presented in

Figure 2b shows a pronounced change between the initial stage (ε = 0) and

the onset of strain hardening (approximately ε = 0.25). In Figure S3 below,

we provide additional distributions at intermediate strain levels.
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Figure S3: Distribution of relaxation times at different strain values up to
the onset of strain hardening, during a uniaxial tension at a constant strain
rate. Note that the 2 extreme curves (ε = 0 and ε = 0.25) are plotted in
bold and have the same colors as in Figure 2b.
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II. System representation

In this section, we describe briefly the numerical model which was devel-

oped in previous works in order to solve numerically the equations of the

theoretical model in three dimensions.1,3–7 much of this section has already

been described in the SI section of.1 The numerical values of the quantities

are reported in Table 1.

II.1 Interacting objects and forces

The numerical system is represented by a 3D simulation box containing

nodes connected together via 2 different types of springs : glassy springs,

which model dynamical heterogeneities (also called subunits in the current

manuscript), and rubbery springs, which model the elasticity of the en-

tangled or cross-linked matrix. An illustration of the simulation box is

shown in Figure S4.

Three types of forces are acting on nodes:

� Hard core repulsion between nodes :

F⃗HS(r) =


12u0

r

(
d
r

)12 r⃗
r
+ Freg(r)

r⃗
r
if r < rHS

0 if r > rHS

with Freg(r) a regularisation term for a smooth evolution of F⃗HS(r)

around rHS. r is the distance between the two nodes.

� Elasticity of rubbery springs :

F⃗r = −k∞ (r − l0) u⃗r
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Figure S4: The figure is reproduced from.1 It is an illustration of the
different objects inside the simulation box (the number of objects, scales
and springs connectivity are obviously not respected). Glassy and rubbery
springs are connected through nodes. Nodes are the moving objects : pe-
riodic boundary conditions are applied with the so-called minimum image
convention. Glassy springs are the objects of interest since they model the
subunits (dynamical heterogeneities) of length 3-5 nm.

where F⃗r is the force exerted by node B on node A (if connected by a

rubbery spring), u⃗r is the unit vector from A to B, r the spring length

and l0 the equilibrium length of the rubbery spring. l0 is a constant

of the order of ξ.

� Elasticity of glassy springs :

F⃗g = −k0
(
r⃗g − r⃗g0

)

where F⃗g is the force exerted by node B on node A (if connected by a

glassy spring), r⃗g is the position vector of the glassy spring from node

A to node B (r⃗g = A⃗B) and r⃗g0 is the equilibrium position vector of

the glassy spring.
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The connectivity (average number of springs per node) has been set to 7

for glassy springs and 12 for rubbery springs, consistently with.1,5 In this

manuscript, the numerical systems for the simulations are composed of 3375

nodes, 12030 glassy springs and 20250 rubbery springs, corresponding to the

same values as in.1 The glassy springs are the relevant ingredients below Tg,

thus the system comprises roughly 12030 × 3 ≈ 36000 degrees of freedom.

Note that the system is sufficiently large for the numerical results to be

essentially insensitive to the box size; further increases would only reduce

numerical noise.

The objects of interest are glassy springs which model subunits. Those

springs can relax the stress they bear: they possess an unusual behavior

which is described below.

II.2 Local and global stress

The local glassy stress tensor σ∼
g associated with a glassy spring is given

by : σg
ij =

Fg,i.r
g
j

2 ξ3
where Fg,i = F⃗g.e⃗i and rgj = r⃗g.e⃗j. This local glassy stress

tensor is then symmetrized. Similarly, a local rubbery stress tensor σ∼
r
ij is

associated with a rubbery spring.

The local stress acting on a node is given by Irving Kirkwood’s formula

applied to a local volume of 2 ξ3: σnode
ij = 1

2ξ3
.
∑

k F
(k)
i .r

(k)
j , with F

(k)
i the ith

component of the force exerted by the spring k on the node, and r
(k)
j the

jth component of the position vector of the spring k (the spring being either

glassy or rubbery). It amounts to summing up glassy and rubbery stresses
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associated with the springs connected to the considered node.

Note that k0 ≫ k∞, therefore the contribution to stress of glassy springs

is much higher than that of rubbery springs if those glassy springs are not

short-lived (i.e. if their relaxation time is not too low).

Global stress < σ > is calculated according to Irving-Kirkwood’s for-

mula: < σij >= 1
2V

.
∑

m,n F
(m,n)
i .r

(m,n)
j where the summation runs over all

pairs of nodes (i,j), with V the total volume of the simulation box, F
(m,n)
i

the ith component of the force and r
(m,n)
j the jth component of the position

vector between nodes i and j. This is equivalent to taking the average of

the local nodal stresses.

II.3 Behaviour of the glassy springs

The numerical system deals with 12030 glassy springs, each having their

own age t, stress tensor σ∼, relaxation time τs and order parameter q
∼
.

II.3.1 Local relaxation time

The local intrinsic relaxation time of a glassy spring τs is given by : τs =

dt
dPrel

, where dPrel is the probability that the spring relaxes during dt, given

by equation 7 of the article. The distribution of relaxation times {τs} is

computed during the simulation at any time step, it numerically consists

of a set of 12030 relaxation times. The effective local relaxation time of a

given subunit is then given by τeff = min (τs, τd), with τs the intrinsic relax-

ation time of the considered spring and τd = N
2
3
c τf the diffusion time. The

relaxation time τf of the 30 % fastest subunits (equation (5) of the article
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with qc = 0.3) is accessed numerically from the set of intrinsic relaxation

times {τs}.

One can note that the macroscopic rigidity of the system comes from the

simulations and is not presupposed a priori.

II.3.2 Relaxation and aging mechanisms

The dependence of the intrinsic relaxation time τs of a glassy spring on its

age tw is given by Equation (6) of the article (with τs(tw) =
dt

dPrel(tw,0,0)
). τs is

approximately proportional to the age tw at a fixed temperature, with tw the

elapsed time since the last relaxation of the considered spring. Whenever

the spring does not relax, its age tw then increases like the elapsed time.

Whenever the spring relaxes, its new equilibrium position vector becomes

the current position vector (r⃗g0 ← r⃗g), therefore the local glassy force drops

to zero, and the spring age also drops to a minimum value close to zero

(δt = 10−4 s) hence τs tends to drop as well as a consequence. This enables

to model ageing and rejuvenation of the glassy polymer.

The dependence of the relaxation time on temperature is given by the WLF

law of the considered polymer. Below Tg, the global stress < σ > comes

from glassy springs which are long-lived.

II.3.3 Local orientation

The local order parameter q
∼
is attached to a given glassy spring and evolves

according to Equation (3) of the manuscript, where τ is the effective local

relaxation time of the glassy spring (= τeff as defined previously) and σ∼dev

the deviatoric local stress attached to the spring (σ∼
g
dev as defined in the
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current SI).

II.4 Numerical values of physical quantities and simu-

lation procedures

II.4.1 Initialization

Table 1 presents the main simulation parameters with their numerical val-

ues as well as the corresponding physical quantities.

This step enables to create a simulation box with 3375 nodes bounded to-

gether with 12030 glassy springs and 20250 rubbery springs, such that the

system is at mechanical equilibrium (nil internal stress and nodes veloci-

ties). The system then ages for a given given time (104s in our simulations)

to let the distribution of relaxation times evolve according to time and tem-

perature.

II.4.2 Simulation procedure for protocol II

The simulation procedure is described below. It is also written in pseudo

code in algorithm 1 with t1 and t3 chosen to match the predefined strain

values, t2 = 30 s and r⃗g0 and r⃗g the equilibrium and current glassy spring

vectors respectively.

1. Initially : distribution of ages {t} (hence of relaxation times {τs} and

{τeff}) due to preliminary aging, distribution of nil glassy stresses and

orientations ({σ∼g} = {q
∼
} = {0∼}).

2. A tensile test is performed by applying a constant strain rate ⟨ε̇⟩ =

10−1s−1 to the system until the chosen predefined true strain ⟨ε0⟩ is

13



Table 1: Main simulation parameters, with their corresponding physical
quantities.

Simulation parameter Physical equivalence Numerical value
Thermal energy ∼ kBTg ∼ 0.18
Unit length ξ 5 nm 1
Fast percolating fraction qc 30% 0.3
Slow percolating fraction pc 11% 0.11

Surface of a domain N
2/3
c ∼ 100 monomers 102

Glassy stiffness k0 G0ξ ∼ 3GPa · ξ ∼ 3000
Rubbery stiffness k∞ G′

∞ξ ∼ 105 Pa ·ξ ∼ 0.1
Plasticizing parameter λ λ ∼ 10−15Pa−2 10−3

Orientation parameter µ2 µ2 ∼ 300 300
Pressure parameter a∗p ap ∼ 0.01 0.01 or 0
Entropic relaxation parameter 1

R
1
R
∼ 0.1 0.1

Average rubbery connectivity grubbery 12
Average glassy connectivity gglassy 7
Excluded volume radius d ξ 1
Excluded volume energy u0 (∼ 1

20
kBTg) ∼ 0.01

Equilibrium length of rubbery springs l0 ξ ∼ 1
Excluded volume cutoff rHS ( 3.26 nm) 1.08
Time step δt 10−4s 10−4

Poisson’s ratio ν 0.5 0.5
C1 = 16.0 16.0

WLF parameters C2 = 47.0K 47.0
Tg = 370K 365

reached along e⃗3.

3. The system is maintained at this fixed ⟨ε0⟩ value for a given wait-

ing time tw (10 seconds in most simulations presented in the current

manuscript).

4. Finally, the sample is deformed again in tension along e⃗3 at the same

initial strain rate ⟨ε̇⟩ up to the predefined ”final” total strain εfinal =

1.5.

The time step of the simulation is δt = 10−4 s during the entire procedure.
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An explicit Euler scheme is used in the simulations to solve the differential

equations for the set of all nodes positions {r⃗} and glassy springs orienta-

tions {q
∼
}.
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1. Initial tension
tsimu = 0
while tsimu < t1 do

1.1. Affine deformation :
Affine change of node positions : r⃗ ← (I∼+ < ε̇∼ > .δt) .r⃗

1.2. Explicit Euler Method:
Compute all variables at new time tsimu ← tsimu + δt
Update of global stress < σ∼ >

1.3. Aging step :
for all glassy springs do

Compute τs
end
Compute τd
for all glassy springs do

Compute τeff
Compute rupture probability δPrel =

δt
τeff

Compare δPrel with random variable vrand ∈ [0, 1] (with
uniform distribution) :

• δPrel < vrand → no relaxation : age t← t+ δt

• δPrel > vrand → relaxation : age t← tmin = 2δt
and spring equilibrium position r⃗g0 ← r⃗g

end

end
2. Waiting (relaxation) step during tw
while tsimu < t1 + tw do

Tension with ε̇ = 0 (same algorithm as 1. with no affine
deformation)

end
3. Second mechanical test
while tsimu < t1 + tw + t2 do

Tension at ε̇ (same algorithm as 1.)
end

Algorithm 1: General algorithm of protocol II
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