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On the statistical analysis of the fracture mechanics of silk bundles of P. phalangioides

The studied silk bundles show a scattering of strength values which can be investigated 
using classic mechanical analysis. For fibrous material, it is supposed that the failure derives 
from the weakest chain link present in the fibre. When this is true, the strength of the material 
during repeated measurements follows a two-parameter Weibull distribution1, 2:
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Where  is an increasing function bounded from 0 to 1 that expresses the probability 𝑃(𝜎)
of a fibre to fail for a stress value of , and  is a geometrical parameter. The two parameters 𝜎 𝑆

are the shape parameter  and the scale parameter . The value of the shape parameter  𝑚 𝜎0 𝑚
indicates how repeatable is the strength of the fibre, i.e. if the considered material shows a 
wider (larger values) or thicker (lower values) scattering of their strength values. The 
geometrical parameter  scales with the length, cross-section, or volume of the fibre, depending 𝑆
on the effective defect proportionality of the fibre, and on the dimensionality of the dissipated 
energy during fracture3, 4. In literature, while all densities have been analysed, a predominance 
of length-dependent defect density studies are found, including for polymeric fibres4-6. To 
better represent this proportionality, often a Modified Weibull distribution, or double-humped 
Weibull distribution, is used 
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Where, again,  can indicate the length, cross-sectional area, or volume of the fibre, and 𝐴

 is its reference value, often assumed equal to a unitary value, as its independent from the 𝐴0

other parameters and it is only needed to render  dimensionless2-9. When the parameter  is 𝐺 𝑣
equal to 1, Equation (2) becomes of the same form as Equation (1). When , the geometrical 𝑣 = 0
dependency disappears. The introduction of the parameter  is needed to compensate for the 𝑣
non-Weibull geometrical effects3, 6. In a study conducted on spider silk data,  was intended as 𝑣
the fractal dimension of the fracture energy dissipation7.

From Equation (2), it is immediate to derive that, according to Weibull’s theory, there 
is a defined relationship between the ratios of strengths and the ratios of the size of the fibres:
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This relationship can be used to determine the value of , provided that the value of  is already 𝑣 𝑚
obtained using Equation (1).

To validate the agreement of our data with classical mechanics, we first applied 
Equation (1) to each bundle type separately. To do so, we have used both the linear regression 
method, and the maximum likelihood method, finding compatible results between the two. All 
bundles agree with Weibull’s distribution, with the manually collected PMS bundles being the 
one with the weakest  value, equal to . We could then proceed to extract the values 𝑅2 𝑅2 = 0.839
of the geometrical scaling  for each silk type, using the cross-sectional areas measured for 𝑣



each of our bundle as our geometrical feature . The results for P. phalangioides obtained 𝑆
through the linear regression method are shown in Table 1.

From the Weibull analysis presented in Table 1, and visualised in Figure 1, it can be 
seen how bridging lines are, at the same time, the most variable silk bundle, with a shape 
parameter of 2.39, and the ones with the highest characteristic strength, 1121.9 MPa. This result 
can be surprising when considering that bridging lines are formed by 2 fibres coming from the 
same silk gland. At the other end of this range, we find P. phalangioides gumfoot. Gumfoot 
bundles showed a low characteristic strength, but a higher repeatability than any other silk 
product. This mechanical difference correlates with the different production techniques of the 
two bundles: bridging lines are quickly spun by the spider with the help of its fourth pair of 
legs, leading to a possible generation of multiple defects along the length of the fibre. Gumfoot 
bundles, on the other end, are spun while slowly descending from an upper substrate to a lower 
substrate. This result indicates that the spinning speed, and not the number of fibres, may be 
responsible for a higher or lower defect density in this spider species.

Table 1 also presents the size effect parameter . Our results show that four out of six 𝑣
bundles present a considerable size effect. The value of  for these four bundles, which are the 𝑣
three draglines and the bridging line, range from 1.89 to 4.92, a non-trivial result, as often in 
literature this value is assumed to be limited to the range between 0 and 1, as described in the 
previous section.

When , the material exhibits enhanced size effects beyond those predicted by 𝑣 >  1
classical linear elastic fracture mechanics. The scaling behaviour found here implies that the 
effective flaw size decreases more rapidly with specimen dimensions than geometric similarity 
would predict. This phenomenon has been documented in other biological materials, notably 
bamboo fibres, where Wang and Shao8 reported similar deviations from classical Weibull 
scaling; we also found a more recent work, investigating sponge fibrous structure, where 
strength scaled inversely with the square of specimen dimension rather than the expected 
square root relationship, allegedly due to the inner structure of these materials10. To help us 
understand what this implies, we explore classic fracture mechanics, starting from the Griffith’s 
criterion. 

According to Griffith's criterion, the stress to reach fracture  scales as , where  𝜎𝑓

𝐺𝐸
𝜋𝑎 𝛾

is the strain energy release rate,  is the elastic modulus, and  is the characteristic flaw size11-𝐸 𝑎
13. For a linearly elastic cylindrical fibre, the equation can be rewritten as  

𝜎𝑓 =
𝛾𝐸
𝐷 (4)

where  is the fibre diameter. This formulation indicates that the stress should scale with the 𝐷
inverse square root of the diameter. We calculate the equivalent diameter of a bundle by using 

the straightforward geometrical relationship . The results of this analysis are reported 
𝑑 = 2

𝐴
𝜋

  

in Table 2 and illustrated in Figure 3. Five of the six silk bundle types demonstrate statistically 
significant correlations between strength and the square root of the modulus-to-diameter ratio 

. The strength of these correlations varies across silk types, with bridging lines and walking 𝐸 𝑑
draglines showing the strongest adherence to the energy criterion. 



If we go back to Equation (3), and we consider the cross-section as the geometrical 
feature being considered, we obtain that, for a cylindrical fibre, the stress to fracture should 
scale with the known value

𝜎2 = 𝜎1 (𝐷2

𝐷1
) ‒

2𝑣
𝑚 (5)

which leads to the same value reported in the Equation (4) for a value of . However, in 
𝑣
𝑚

=
1
4

our case, the values of this ration are much higher, as we discussed in the previous paragraph. 
The agreement of our data with both theories, and the disagreement with the quantitative 
comparison, are to be related to the presence of the Young’s modulus in Equation  (4); indeed, 
P. phalangioides produces fibre bundles which agree with classical fracture analysis, but also 
produces fibre bundle of the same type, and during the same behaviour, with different Young’s 
modulus. This variation cannot be excluded, and cannot be represented just through an average. 
To better illustrate this, we have run the correlation , also reported in Table 2. The p-𝜎 ∝ 1 𝑑
value and the R² both decrease for every silk bundle type excluding drop-down draglines made 
of 4 fibres. 

These results indicate that, despite their nonlinear behaviour these silk bundles still show a 
relationship between the young’s modulus and strength. Furthermore, it also shows that the 
variation of Young’s moduli in a single bundle cannot be just reconducted to its own average, 
but instead, each bundle has to be considered individually. Spider silk is engineered to be able 
to achieve its performances by tuning not only its size and its fibre type, ie, the glands involved 
in the bundle production, but somehow also its stiffness during each single silk spinning. 

In this scenario, the results found about mechanical properties of gumfoot bundles is 
particularly interesting. Their mechanical properties appear to not scale with the cross-sectional 
area. This could indicate that they are composed of a main load carrier, which has consistent 
diameter, while the other fibres in the bundle do not participate in the load transfer. This is in 
contrast with the SEM images we have obtained, where it appears that parallel fibres run from 
one end of the sample to the other. Another option would be that the cross-sectional area 
measurements are afflicted by a systematic error, due to the non-cylindrical fibres, or the 
presence of coatings, or other structures which affect the effective cross-sectional area of the 
bundle. To understand this phenomenon, we need to interrogate the internal mechanics of each 
bundle.



Figure S1 Weibull plot for P. phalangioides, with linear regression results reported as dashed lines for each silk 
bundle type. All bundle types agree with the weakest-chain link distribution. 



Figure S2 Correlation plot between the logarithm of the strength i.e. stress at break, and the logarithm of the 
cross-sectional area, for each measured bundle. Linear regression fits (dashed lines) are reported. Dragline bundles 
report a  and a strong negative slope, which surpasses the prediction made by the Weibull distribution. 𝑅2 > 0.5
PMS and gumfoot bundles show no correlation between the strength and the cross-sectional area.



Figure S3 Fracture mechanics relationships for P. phalangioides silk bundles. The plots demonstrate the 
correlation between stress at break and the square root of the modulus-to-diameter ratio for each silk type. Linear 
regression fits (dashed lines) validate the prediction illustrated in 13 that strength scales with the square root of 
modulus divided by diameter, as predicted by Griffith’s criterion.



Table S1 Results of the two-parameter Weibull analysis conducted on each silk type for P. phalangioides, and the scale parameter v found when studying the proportionality 
between strength and cross-section according to the modified Weibull distribution, with between brackets its significance.

Silk Type Sample 
Size

 [MPa]𝜎  [MPa]Δ𝜎 CV 𝑚  [MPa]𝜎0 R² 𝑣

Drop-down dragline 
(N2)

12 998.3 198.4 0.199 4.86 1088.6 0.962 2.999 (**)

Drop-down dragline 
(N4)

11 937.4 174.6 0.186 5.44 1014.2 0.962 4.92 (**)

Walking dragline 16 1001.4 277.2 0.277 3.41 1121.9 0.909 3.117 (**)

Bridging line 17 1123.7 440.8 0.392 2.39 1280.4 0.987 1.789 (**)

PMS 11 731 156.7 0.214 4.83 798 0.839 -0.41 (ns)

Gumfoot 14 674.6 108.8 0.161 6.71 721.8 0.857 0.54 (ns)

Table S2 Fracture mechanics analysis correlating bundle equivalent diameter with tensile strength for P. phalangioides, using the relationships  and  for 𝜎 ∝ 𝐸 𝑑 𝜎 ∝ 1 𝑑
each silk bundle type, presenting coefficients of determination (r²), statistical significance (p values). 

Silk Type  [ ]𝑑 𝜇𝑚  [GPa]𝐸  vs 𝜎 𝐸 𝑑
p-value

 vs 𝜎 𝐸 𝑑
 R²

 vs 𝜎 1 𝑑
p-value

 vs 𝜎 1 𝑑
R²

Drop-down dragline (N2) 0.973 17.098 8.41E-05 0.801 0.001 0.670

Drop-down dragline (N4) 1.302 13.575 0.012 0.520 0.006 0.586

Walking dragline 1.628 11.907 8.72E-07 0.832 4.17E-04 0.601

Bridging line 1.366 14.281 3.93E-08 0.874 0.003 0.462

PMS 1.272 9.035 0.033 0.413 0.810 0.007

Gumfoot 1.487 7.860 0.071 0.247 0.626 0.020



On the bundle properties of N. cellanus

We repeated the analysis using the mechanical data of the four bundle types we 
collected for N. cellanus. Due to the lack of variety in bundle cross-sectional areas, the lower 
sample size, and the lower number of bundle types produced by the spider, it was not possible 
to extract the same amount of significant information for N. cellanus, compared to P. 
phalangioides. However, Table 3 and Figure 4 shows that the bundles follow Weibull’s theory, 
and thus agree with the weakest link principle. Gumfoot bundles of N. cellanus also present a 
low shape parameter when compared with the ones of P. phalangioides, while drop-down 
draglines show higher reproducibility. 

Furthermore, it is interesting to observe, as shown in Figure 5, that also in N. cellanus 
there is no correlation between the strength of the gumfoot bundles and their sizes. Due to the 
lack of data for other bundles, however, it is here hard to say if this could be due to a general 
lack of defect scaling in the silk products of this species. Finally, Table 4 and Figure 6 show 
once again the importance of considering the Young’s modulus variations in natural silk 
bundles, as the p-values found for the  are lower than the ones found for  for all 𝜎 ∝ 𝐸 𝑑 𝜎 ∝ 1 𝑑
silk products excluded 4 fibres drop-down draglines, which are influenced by the small sample 
size.

Figure S4 Weibull plot for N. cellanus, with linear regression results reported as dashed lines for each silk bundle 
type. All bundle types agree with the weakest-chain link distribution. 



Figure S5 Fracture mechanics relationships for N. cellanus silk bundles, considering only the diameter as scaling 
parameter and ignoring the Young’s modulus variation. Gumfoot bundles show no correlation between their size 
and their strength. Walking draglines and drop-down draglines all have similar diameters, affecting the goodness 
of the measurement. However, it is visible.



Figure S6 Fracture mechanics relationships for N. cellanus silk bundles. The plots demonstrate the correlation 
between stress at break and the square root of the modulus-to-diameter ratio for 2 fibres drop-down draglines and 
walking draglines. Sufficient data is missing to assess the proportionality for the 4-fibre drop-down draglines. 



Table S3 Results of the two-parameter Weibull analysis conducted on each silk type for N. cellanus, and the scale parameter v found when studying the proportionality between 
strength and cross-section according to the modified Weibull distribution, with between brackets its significance. 

Silk Type Sample 
Size

 [MPa]𝜎  [MPa]Δ𝜎 CV 𝑚  [MPa]𝜎0 R² 𝑣

Drop-down dragline (N4) 5 886.3 144.1 0.163 5.25 959.2 0.963 3.509 (ns)
Drop-down dragline (N2) 7 891.6 239.9 0.269 3.32 1000.2 0.863 4.163 (ns)
Walking dragline 10 727 189.8 0.261 2.63 842.0 0.807 1.949 (**)
Gumfoot 16 793.3 443.8 0.559 1.64 907.9 0.96 0.333 (ns)

Table S4 Fracture mechanics analysis correlating bundle equivalent diameter with tensile strength for N. cellanus, using the relationships  and  for each 𝜎 ∝ 𝐸 𝑑 𝜎 ∝ 1 𝑑
silk bundle type, presenting coefficients of determination (r²), statistical significance (p values). 

Silk Type  [ ]𝑑 𝜇𝑚  [GPa]𝐸  vs 𝜎 𝐸 𝑑
p-value

 vs 𝜎 𝐸 𝑑
 R²

 vs 𝜎 1 𝑑
p-value

 vs 𝜎 1 𝑑
R²

Drop-down dragline (N4) 1.35 11.77 0.6167 0.0936 0.1086 0.6306

Drop-down dragline (N2) 0.83 12.46 0.0114 0.7530 0.3899 0.1504

Walking dragline 1.31 10.01 0.0001 0.8708 0.0088 0.5968

Gumfoot 1.95 11.00 0.0006 0.5835 0.9449 0.0004



On the internal mechanical properties of silk bundles and their fibres

As shown in the last sections, one of the most important properties of the silk bundles 
is their variation of mechanical properties. Our SEM images confirmed that the bundles of P. 
phalangioides are composed of fibres running in parallel, fibres that can be found both in 
contact or distant from each other. The behaviour of fibres in parallel is a well-studied subject 
14-18. In its simplest theoretical implementation, the load carried by a bundle of fibre can be 
computed using Hooke’s law: the force at each strain corresponds to the sum of the load carried 
by each fibre in the bundle for that value of strain, i.e. a bundle of parallel fibres has a stiffness 
equal to the sum of the stiffness composing it. This simple formulation is a consequence of the 
linear elastic model, and thus has to be applied carefully when dealing with high non-linear 
materials, as spider silk. Positive and negative interactions can arise from, to name a few: 
crossing interaction between fibres due to coiling16, 17; stress propagation from one fibre to the 
other after partial fracture of the fibres inside the bundle15; friction-driven interactions between 
the fibres 18; the presence of hidden lengths inside the bundles 19, 20. As a result, the strength 
and toughness of a bundle can be extremely different from the simple linear combination of the 
strengths and toughness of the fibres forming it. However, given specific experimental 
conditions, some assumptions still hold.

In our experiments, fibres are perfectly clamped at the two extremities and are pulled 
at a constant strain rate, by applying a displacement. A system of any number of clamped fibres 
in displacement control follows, in the linear region, Hooke’s law 15. This means that the 
stiffness of a bundle near the origin, i.e. the initial slope of the load-displacement curve, is 
indeed given by the linear combination of the fibres forming it. To confirm this, we 
implemented a Finite Element Method (FEM) to confirm that different contact scenarios 
between fibres do not affect the linear phase of bundles, using different geometries inspired by 
the SEM images we have collected (Figure 7). We used the linear solver MOFEM21. Table 5 
presents the parameters used in this work, however these do not influence the results presented 
here, and any other set of parameters could be chosen. Our model revealed that the contact 
between the fibres does not affect the load carried by the bundle in the elastic region, as 
expected by a linear relationship and a uniform material: even when considering complete 
fusing between four fibres, the load measured it is coincident with the one measured when the 
fibres are separated from each other, and with the one calculated by applying Hooke’s law. 
This indicates that, for small deformations and in a quasi-static experiment, it is possible to 
apply linear elasticity to fibre bundles of any geometry. This holds true even if changing the 
position, stiffnesses, and non-linear response of the fibre forming the bundle: all of these 
parameters affect the bundle only after partial fracture is observed, and thus mechanical 
properties change how stresses redistribute along the now non-uniform cross-sections along 
the bundle length. To study if this could partly explain our experimental results, we investigated 
partially fractured bundles using the FEM described before. 

The FEM analysis confirmed that partial fracture of our bundles should lead to total 
failure of the bundle. The stresses accumulate at the interfaces of the broken fibre and the 
contact between different fibres, as shown in Figure 8. When considering realistic ranges for 
silk-based materials, the found stresses at the interface are high enough to lead to immediate 
crack propagation, and thus total bundle failure. This result is in agreement with the results 
shown in Table 1 and Table 2: the strengths follow a Weibull distribution, and the cross-
sectional area and the young’s modulus of each bundle correlates with the strength, indicating 
that the overall behaviour of the bundles is similar to the one that it would have if it was a 
single fibre of equivalent cross-section. Indeed, our load-elongation curves do not show 



multiple prominent peaks: this indicates the absence of multiple, independent fractures 
happening in the bundle, while it is compatible with the presence of a single avalanche, which 
causes total failure of all the fibres for the same strain value15. 

Figure S7 Four geometries used in our linear elastic Finite Element Method to verify stress distributions in the 
bundle during the elastic phase. Different Young’s moduli can be assigned to different volume portions for each 
mesh. 

Table S5 Overview of simulation parameters used in the FEM model. We note that the chosen parameters do not 
influence the results presented in this study.

Symbol Parameter Value
𝜈 Poisson’s ratio (both fibres) 0.3
𝐿 Fibre length (both fibres) 10 m𝜇

𝑅small Fibre diameter (small fibres) 1 m𝜇

𝑅big Fibre diameter (big fibres) 2 m𝜇

𝜀sim Simulated strain 0.1
𝜎b, big Stress at break (big fibres) 0.5 GPa
𝐸big Young’s modulus (big fibres) 2.5 GPa
𝜀b, big Strain at break (big fibres) 0.1 – 0.4
𝐸small Young’s modulus (small fibres) 0.1 GPa – 25 GPa
𝜎b, small Stress at break (small fibres) 0.1 GPa – 1 GPa



Figure S8 Stress distributions found for different geometries and partial fracture configuration. A) Intact bundle. 
For every intact bundle, the stress distribution found was homogeneous outside of the region where the fixed 
displacement was applied, and the ratio between the stresses in the different materials reflected the ratios between 
the different Young’s moduli for every parameter combination. B) When a partial fracture is observed in one of 
the fibres, here a fibre of bigger diameter, stresses concentrate at the interface with neighbouring fibres for all 
contact scenarios. Stresses at the interface between the neighbouring fibre and the fracture are  times higher ≃ 100
than in figure A. C) Identical scenario for a fracture happening on a smaller diameter fibre. Here, stress 
concentrations lead to stresses  higher than in Figure A. In both figures B) and C), stress concentration leads ≃ 4
to an avalanche that leads to immediate fracture of the entire bundle.

Another phenomenon which is known to decrease the effective Young’s modulus in the 
linear region is the presence of non-heterogeneous slacks inside the bundle, leading to fibres 
not participating to the stress load until a certain strain threshold 19, 20. In our SEM images, and 
in our mechanical data, we have, however found no typical signs of these slacks, as a later rise 
of the slope of the load-displacement curve, or the presence of ribbons and other geometrical 
features in the bundle.  Finally, the collection rate at which silk is produced is known to possibly 
affect the mechanical properties of silk: however, it was tested for T. clavata by Yazawa and 
Sasaki22 that collection at different speed and humidity conditions did not have a significant 
impact on the Young’s modulus.

The practical consequence of this conclusion, is that we expect the Young’s modulus 
of bundles based on single fibre types to be lower than heterogeneous fibre bundles. This 
behaviour is observed in our data regarding N. cellulanus: dropdown draglines made of 2 and 
4 fibres have a relative standard deviation of 19.93% (N = 7) and 8.02% (N = 5), respectively. 
These values are compatible with the range of relative standard deviations found in literature 
for single major ampullate fibres of Araneidae 22–24. The relative standard deviations we found 
for heterogeneous bundles is higher, with a value of 37.91% for gumfoot silk bundles (N = 17) 
and 31.04% for walking draglines (N = 10). 



Our results for P. phalangioides reveal however a richer variety of moduli. Bridging 
lines are produced by this spider species using only minor ampullate silk: however, the 
aggregated data shows a relative standard deviation of 41.77% (N=17). The same is true for 
manually collected aciniform silk: however, its relative standard deviation 52.79% (N=10) is 
affected by the low value of its Young’s modulus. Dropdown draglines silk threads, a bundle 
known to be composed by two major ampullate silk threads, show a standard deviation of 
27.18% (N=12). 

We have also considered the slope of the curve in the load-strain curve, without dividing 
it by the measured cross-section (or, in other words, we multiply the Young’s modulus by the 
cross sectional area for each bundle). This value, is usually a bad reference to identify the 
material type, as it does not consider the possible geometric variations of silk. The relative 
standard deviation values for this parameter are indeed twice as high for gumfoot bundles of 
N. cellulanus than what is found for the related Young’s modulus; however, for P. 
phalangioides, the dropdown dragline silk shows a relative standard deviation of 19.65% for 2 
fibre draglines and 13.71% for 4 fibre draglines. When focusing on single individuals, the 
results about the stiffnesses of the bundles become even more revealing: 2 fibres dropdown 
draglines shows an average relative standard deviations across specimens of 15.40% (N=4); 
walking draglines shows an average relative standard deviations across specimen of 8.72% 
(N=5); bridging lines show an average relative standard deviation across specimen of 23.20%, 
a result particularly meaningful when compared to the 33.59% value obtained when 
considering all stiffness values together, independently from the specimen, or all the Young’s 
moduli, 41.77%. In practice, this indicates that the silk properties of these bundles show a 
higher consistency before normalisation, and when considering each individual independently, 
as if each spider he’s able to produce materials and bundles capable to reach a certain force 
rather than a certain stress. This also explains the importance of the young’s modulus in the 
strength scaling predicted by the Griffith criterion presented in Equation (4) and discussed in 
the previous section. This extreme variability and adaptability of the silk mechanical properties 
could be an advantage for a cosmopolitan spider as P. phalangioides.

Due to the extreme variability of silk properties of single fibres and fibre bundles, it is 
unfeasible to try to derive the composition of the bundles of P. phalangioides starting from the 
biological and mechanical constraints known. In particular, bundles containing both major and 
minor ampullate silk do not show any significant difference between their behaviour; this is 
complicated by the fact that bridging lines, known to be made only from minor ampullate silk, 
show a Young’s modulus compatible with the dragline bundles, independently from their 
number of fibres. The results presented in this work suggest that we should reconsider how we 
historically gathered data regarding the mechanical properties of spider silk, as for P. 
phalangioides, and potentially other spiders, the average values of the mechanical properties 
of their dropdown draglines does not capture the observed complexity. Future studies should 
focus on the internal composition and mechanics of these extremely variable bundles. 
Moreover, we highlight the importance of considering naturally produced silk in similar 
studies. This study suggests that spinning conditions and spider behaviour could have a higher 
effect on spider silk properties than what is currently considered in the literature.



On the consequence of a lack of interaction between fibres in clamped bundles under 
uniaxial tension

Our study shows that P. phalangioides silk bundles can include major ampullate fibres, 
minor ampullate and aciniform fibres. In this study, we also discuss how the empirical, 
numerical and statistical analysis all validate the assumption that the fibres included in these 
bundles are in strong contact, and how this affects the behaviour of the bundle after first 
fracture, but not before so. To clarify this concept, we here show a numerical solution of the 
Fibre Bundle Model (FBM) applied to a six fibre bundle15 . We note here, that for a stiffly 
clamped system of fibres, non-interacting between themselves, and for a low number of fibres 
with discernible properties (i.e., that do not need to be represented as a distribution function), 
the FBM reduces itself to a simple problem of non-linear fibres in parallel under externally 
applied monotonously increased strain. The properties of each fibre type are shown in table. 
The critical strain is assumed to be normally distributed across a mean value, with a width of 
the distribution equal to 10% of the mean critical strain value. As the fibres are assumed to be 
non-interacting and under monotonous stretch, we could also consider non-linear behaviours20 
although that wouldn’t change qualitatively the result shown here. We report here one 
exemplary result in Figure S6. We can see from the theoretical predicted curve that a failure of 
a large, load-bearing fibre, should lead to a distinct peak in the load-displacement curve. Each 
fibre fails independently, releasing its elastic energy to the infinitely stiff boundary condition. 
This result is  independent from the specific properties assumed for the fibres. This is not what 
we observe in the empirical curves of our bundles, where the curve has a very smooth 
(draglines, bridging lines) or smooth (gumfoot) shape. According to the FBM, if a bundle is 
made of two identical fibres, differing only for their critical strain value, the load measures at 
that point would perfectly halve. This is in deep contrast with what we observe in our empirical 
results, where curves proceed in a smooth way, except for some small peaks observed in the 
curves of gumfoot threads. Moreover, we never observe surviving aciniform fibres, despite 
their nominal large critical strain, which should frequently surpass 40%.

The FBM explains that2 load distribution could also be mediated by the presence of a soft 
clamping mechanisms able to transmit forces between the fibres through the edges, similar to 
what happens in a fibre reinforced composite with perfectly aligned fibres2. The theoretical 
investigation of this topic goes beyond the scope of this study: however, we have seen no 
evidence, in all of our tests on natural and artificial fibres, of such mechanism being present 
while using our tensile test machine. Furthermore, when testing artificial fibres or spider 
bundles of different spider species20, we were able to discern perfectly the forementioned peaks 
in the load-elongation curve, in accordance to what predicted by the FBM.



Table S6 Parameters for FBM model simulation for the theoretical behaviour of a non-
interacting bundle of three pairs of fibres with distinct mechanical and geometrical properties.

Fibre type Number of 

Fibres

Diameter (μm) Strength (GPa) Mean critical 

strain 

I 2 0.4 0.99 0.19

II 2 0.3 0.2 0.5

III 2 0.89 0.5 0.4

Figure S9 Theoretical quasi-static stress-strain curves of the expected mechanical behaviour of 
a bundle of three pairs of non-interacting fibres with different properties. 



Method

Artificial fibre bundle preparation and testing

Nylon 6,6 fibre bundles (length 1 m, filament diameter 0.01 mm, 14 filaments, tex 
number 1.3) and low-density polyethylene (LDPE) fibre bundles (length 1 m, filament 
diameter 0.044 mm, 90 filaments, tex number 110) were purchased from Goodfellow 
Advanced Materials (Huntingdon, Cambridgeshire, UK.). Individual nylon and LDPE fibres 
were carefully separated from the bundles and recombined to create mixed fibre 
configurations. The fibres were mounted on 11 mm × 11 mm square-punched black 
cardboard frames lined with double-sided adhesive tape. Four fibre configurations were 
tested: single Nylon 6,6 fibre, single LDPE fibre, one Nylon–one LDPE bundle, and a bundle 
consisting of three Nylon 6,6 fibres and one LDPE fibre. Tensile tests were performed using 
a T150 Universal Testing Machine (KLA, Milpitas, California, USA) to record force–
extension data. Tests were conducted at a constant extension rate corresponding to 1% strain 
per second until failure, with a load resolution of 50 mN and an extension resolution of 35 
nm. For each configuration, five independent samples (N = 5) were tested.

From Figure S10, the stress–strain curves show that the Nylon 6,6 fibre exhibits much 
higher tensile strength compared to the LDPE fibre, which displays softer and more ductile 
behaviour. When the two materials were combined and tested together, the resulting stress–
strain curve showed a distinct stress drop at around 35% strain, corresponding to the failure 
of the Nylon 6,6 fibre. In contrast, the LDPE fibre exhibited a strain at break of 
approximately 110%. Increasing the proportion of Nylon 6,6 in the bundle (Nylon6,6–LDPE 
[3:1] configuration) resulted in a higher stress at break compared to the Nylon6,6–LDPE 
[1:1] configuration, although the strain at break remained similar between the two 
configurations. 



Figure S10 Exemplary stress–strain curves of individual LDPE (blue line) and Nylon 6,6 (yellow line) fibres, and 
of mixed bundles composed of Nylon 6,6 and LDPE fibres (green and red lines). The first bundle includes one 
Nylon 6,6 and one LDPE fibre (green line), while the second bundle contains three Nylon 6,6 fibres and one 
LDPE fibre (red line).

Figure S11 Morphology of a gumfoot thread illustrating areas where the individual silk fibres are not properly 
aligned or in full contact, forming loop-like or separated regions within the bundle structure.



Table S7. Sample sizes for each silk thread type from Pholcus phalangioides and Nesticus 
cellulanus used in mechanical property analyses.

Species Silk type Number of spiders Number of samples

Drop-down draglines (N2) 7 12

Drop-down draglines (N4) 9 11

Walking dragline 5 16

Bridging line 8 17

Gumfoot thread 6 14

PMS (forcibly silked) 4 11Ph
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Aciniform (forcibly silked) 5 10

Drop-down draglines (N2) 2 7

Drop-down draglines (N4) 2 5

Walking dragline 2 10
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Gumfoot thread 4 10

(A) (B)

Figure S12 Scanning electron micrographs of N4 dragline samples stretched to 0.1 mm/mm strain. (A) Sample 
showing a thin surface coating that caused several fibres to adhere closely to one another. (B) Sample displaying 
shallow scratch-like surface features between adjacent fibres. These patterns are interpreted as local surface 
artefacts rather than mechanically induced deformation.



(A) (B)

Figure S13 Scanning electron micrographs of forcibly spun (A) posterior median spinneret (PMS) thread and 
(B) aciniform fibres from Pholcus phalangioides. These images are provided for comparison only, as forcibly 
spun fibres do not reflect natural spinning conditions.
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