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On the statistical analysis of the fracture mechanics of silk bundles of P. phalangioides

The studied silk bundles show a scattering of strength values which can be investigated
using classic mechanical analysis. For fibrous material, it is supposed that the failure derives
from the weakest chain link present in the fibre. When this is true, the strength of the material
during repeated measurements follows a two-parameter Weibull distribution'- 2:

P(a)=1-exp(—5-(i)m) (1)
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Where P(9) is an increasing function bounded from 0 to 1 that expresses the probability
of a fibre to fail for a stress value of @, and S is a geometrical parameter. The two parameters
are the shape parameter ™ and the scale parameter %0. The value of the shape parameter m
indicates how repeatable is the strength of the fibre, i.e. if the considered material shows a
wider (larger values) or thicker (lower values) scattering of their strength values. The
geometrical parameter S scales with the length, cross-section, or volume of the fibre, depending
on the effective defect proportionality of the fibre, and on the dimensionality of the dissipated
energy during fracture®“. In literature, while all densities have been analysed, a predominance
of length-dependent defect density studies are found, including for polymeric fibres*6. To
better represent this proportionality, often a Modified Weibull distribution, or double-humped
Weibull distribution, is used
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Where, again, 4 can indicate the length, cross-sectional area, or volume of the fibre, and
0 is its reference value, often assumed equal to a unitary value, as its independent from the
other parameters and it is only needed to render ¢ dimensionless>®. When the parameter v is
equal to 1, Equation (2) becomes of the same form as Equation (1). When v = 0, the geometrical
dependency disappears. The introduction of the parameter v is needed to compensate for the
non-Weibull geometrical effects® ©. In a study conducted on spider silk data, ¥ was intended as
the fractal dimension of the fracture energy dissipation’.
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From Equation (2), it is immediate to derive that, according to Weibull’s theory, there
is a defined relationship between the ratios of strengths and the ratios of the size of the fibres:

g1 v S1
log (0—2) =- alog (5—2) 3)

This relationship can be used to determine the value of ¥, provided that the value of ™ is already
obtained using Equation (1).

To validate the agreement of our data with classical mechanics, we first applied
Equation (1) to each bundle type separately. To do so, we have used both the linear regression
method, and the maximum likelihood method, finding compatible results between the two. All
bundles agree with Weibull’s distribution, with the manually collected PMS bundles being the
one with the weakest R’ value, equal to R* = 0.839. We could then proceed to extract the values
of the geometrical scaling v for each silk type, using the cross-sectional areas measured for



each of our bundle as our geometrical feature S. The results for P. phalangioides obtained
through the linear regression method are shown in Table 1.

From the Weibull analysis presented in Table 1, and visualised in Figure 1, it can be
seen how bridging lines are, at the same time, the most variable silk bundle, with a shape
parameter of 2.39, and the ones with the highest characteristic strength, 1121.9 MPa. This result
can be surprising when considering that bridging lines are formed by 2 fibres coming from the
same silk gland. At the other end of this range, we find P. phalangioides gumfoot. Gumfoot
bundles showed a low characteristic strength, but a higher repeatability than any other silk
product. This mechanical difference correlates with the different production techniques of the
two bundles: bridging lines are quickly spun by the spider with the help of its fourth pair of
legs, leading to a possible generation of multiple defects along the length of the fibre. Gumfoot
bundles, on the other end, are spun while slowly descending from an upper substrate to a lower
substrate. This result indicates that the spinning speed, and not the number of fibres, may be
responsible for a higher or lower defect density in this spider species.

Table 1 also presents the size effect parameter V. Our results show that four out of six
bundles present a considerable size effect. The value of v for these four bundles, which are the
three draglines and the bridging line, range from 1.89 to 4.92, a non-trivial result, as often in
literature this value is assumed to be limited to the range between 0 and 1, as described in the
previous section.

When v > 1, the material exhibits enhanced size effects beyond those predicted by
classical linear elastic fracture mechanics. The scaling behaviour found here implies that the
effective flaw size decreases more rapidly with specimen dimensions than geometric similarity
would predict. This phenomenon has been documented in other biological materials, notably
bamboo fibres, where Wang and Shao® reported similar deviations from classical Weibull
scaling; we also found a more recent work, investigating sponge fibrous structure, where
strength scaled inversely with the square of specimen dimension rather than the expected
square root relationship, allegedly due to the inner structure of these materials!?. To help us
understand what this implies, we explore classic fracture mechanics, starting from the Griffith’s
criterion.
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According to Griffith's criterion, the stress to reach fracture °f scales as \™®, where ¥
is the strain energy release rate, E is the elastic modulus, and @ is the characteristic flaw size'!-
13, For a linearly elastic cylindrical fibre, the equation can be rewritten as

VE
%= 4)

where D is the fibre diameter. This formulation indicates that the stress should scale with the

inverse square root of the diameter. We calculate the equivalent diameter of a bundle by using

A
d=2 |—

the straightforward geometrical relationship T . The results of this analysis are reported
in Table 2 and illustrated in Figure 3. Five of the six silk bundle types demonstrate statistically
significant correlations between strength and the square root of the modulus-to-diameter ratio
VE/d, The strength of these correlations varies across silk types, with bridging lines and walking
draglines showing the strongest adherence to the energy criterion.



If we go back to Equation (3), and we consider the cross-section as the geometrical
feature being considered, we obtain that, for a cylindrical fibre, the stress to fracture should
scale with the known value

— (_) m (5)

v 1

which leads to the same value reported in the Equation (4) for a value of m 4. However, in
our case, the values of this ration are much higher, as we discussed in the previous paragraph.
The agreement of our data with both theories, and the disagreement with the quantitative
comparison, are to be related to the presence of the Young’s modulus in Equation (4); indeed,
P. phalangioides produces fibre bundles which agree with classical fracture analysis, but also
produces fibre bundle of the same type, and during the same behaviour, with different Young’s
modulus. This variation cannot be excluded, and cannot be represented just through an average.
To better illustrate this, we have run the correlation 9 < 14/d also reported in Table 2. The p-
value and the R? both decrease for every silk bundle type excluding drop-down draglines made
of 4 fibres.

These results indicate that, despite their nonlinear behaviour these silk bundles still show a
relationship between the young’s modulus and strength. Furthermore, it also shows that the
variation of Young’s moduli in a single bundle cannot be just reconducted to its own average,
but instead, each bundle has to be considered individually. Spider silk is engineered to be able
to achieve its performances by tuning not only its size and its fibre type, ie, the glands involved
in the bundle production, but somehow also its stiffness during each single silk spinning.

In this scenario, the results found about mechanical properties of gumfoot bundles is
particularly interesting. Their mechanical properties appear to not scale with the cross-sectional
area. This could indicate that they are composed of a main load carrier, which has consistent
diameter, while the other fibres in the bundle do not participate in the load transfer. This is in
contrast with the SEM images we have obtained, where it appears that parallel fibres run from
one end of the sample to the other. Another option would be that the cross-sectional area
measurements are afflicted by a systematic error, due to the non-cylindrical fibres, or the
presence of coatings, or other structures which affect the effective cross-sectional area of the
bundle. To understand this phenomenon, we need to interrogate the internal mechanics of each
bundle.



Weibull probability plot
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Figure S1 Weibull plot for P. phalangioides, with linear regression results reported as dashed lines for each silk
bundle type. All bundle types agree with the weakest-chain link distribution.



Cross-section scaling analysis
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Figure S2 Correlation plot between the logarithm of the strength i.e. stress at break, and the logarithm of the
cross-sectional area, for each measured bundle. Linear regression fits (dashed lines) are reported. Dragline bundles

2
report a R™ > 0.5 and a strong negative slope, which surpasses the prediction made by the Weibull distribution.
PMS and gumfoot bundles show no correlation between the strength and the cross-sectional area.
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Figure S3 Fracture mechanics relationships for P. phalangioides silk bundles. The plots demonstrate the
correlation between stress at break and the square root of the modulus-to-diameter ratio for each silk type. Linear
regression fits (dashed lines) validate the prediction illustrated in 3 that strength scales with the square root of
modulus divided by diameter, as predicted by Griffith’s criterion.



Table S1 Results of the two-parameter Weibull analysis conducted on each silk type for P. phalangioides, and the scale parameter v found when studying the proportionality
between strength and cross-section according to the modified Weibull distribution, with between brackets its significance.

Silk Type Sample | 7 [MPa] Ao [MPa] CV m % [MPa] R? v
Drop-down dragline e 12 998.3 198.4 |  0.199 4.86 1088.6 0.962 2.999 (**)
gﬁ)p-down dragline 11 937.4 174.6 | 0.186 5.44 1014.2 0.962 4.92 (¥*)
g:fking dragline 16 | 1001.4 2772 | 0277 3.41 1121.9 0.909 3.117 (**)
Bridging line 17| 11237 440.8 | 0.392 2.39 1280.4 0.987 1.789 (**)
PMS 11 731 156.7 | 0214 4.83 798 0.839 -0.41 (ns)
Gumfoot 14 674.6 108.8 |  0.161 6.71 721.8 0.857 0.54 (ns)

Table S2 Fracture mechanics analysis correlating bundle equivalent diameter with tensile strength for P. phalangioides, using the relationships & VERd and 0 < 1A/d for
each silk bundle type, presenting coefficients of determination (r?), statistical significance (p values).

Silk Type d fum] E [GPa] o vs VE/d o ys VE/d g vs1/d g vs/1/d
p-value R? p-value R?
Drop-down dragline (N2) 0.973 17.098 8.41E-05 0.801 0.001 0.670
Drop-down dragline (N4) 1.302 13.575 0.012 0.520 0.006 0.586
Walking dragline 1.628 11.907 8.72E-07 0.832 4.17E-04 0.601
Bridging line 1.366 14.281 3.93E-08 0.874 0.003 0.462
PMS 1.272 9.035 0.033 0.413 0.810 0.007
Gumfoot 1.487 7.860 0.071 0.247 0.626 0.020




On the bundle properties of N. cellanus

We repeated the analysis using the mechanical data of the four bundle types we
collected for N. cellanus. Due to the lack of variety in bundle cross-sectional areas, the lower
sample size, and the lower number of bundle types produced by the spider, it was not possible
to extract the same amount of significant information for N. cellanus, compared to P.
phalangioides. However, Table 3 and Figure 4 shows that the bundles follow Weibull’s theory,
and thus agree with the weakest link principle. Gumfoot bundles of N. cellanus also present a
low shape parameter when compared with the ones of P. phalangioides, while drop-down
draglines show higher reproducibility.

Furthermore, it is interesting to observe, as shown in Figure 5, that also in N. cellanus
there is no correlation between the strength of the gumfoot bundles and their sizes. Due to the
lack of data for other bundles, however, it is here hard to say if this could be due to a general
lack of defect scaling in the silk products of this species. Finally, Table 4 and Figure 6 show
once again the importance of considering the Young’s modulus variations in natural silk
bundles, as the p-values found for the 0 % \/Cﬁ are lower than the ones found for @ %+/1/d for all
silk products excluded 4 fibres drop-down draglines, which are influenced by the small sample
size.

Weibull probability plot
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Figure S4 Weibull plot for N. cellanus, with linear regression results reported as dashed lines for each silk bundle
type. All bundle types agree with the weakest-chain link distribution.
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Figure S5 Fracture mechanics relationships for N. cellanus silk bundles, considering only the diameter as scaling
parameter and ignoring the Young’s modulus variation. Gumfoot bundles show no correlation between their size
and their strength. Walking draglines and drop-down draglines all have similar diameters, affecting the goodness

of the measurement. However, it is visible.
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Figure S6 Fracture mechanics relationships for N. cellanus silk bundles. The plots demonstrate the correlation
between stress at break and the square root of the modulus-to-diameter ratio for 2 fibres drop-down draglines and
walking draglines. Sufficient data is missing to assess the proportionality for the 4-fibre drop-down draglines.



Table S3 Results of the two-parameter Weibull analysis conducted on each silk type for N. cellanus, and the scale parameter v found when studying the proportionality between

strength and cross-section according to the modified Weibull distribution, with between brackets its significance.

Silk Type Sample 0 [MPa] | A0 [MPa] cv m % [MPa] R? v
Size
Drop-down dragline (N4) 5 886.3 144.1 0.163 5.25 959.2 0.963 3.509 (ns)
Drop-down dragline (N2) 7 891.6 239.9 0.269 3.32 1000.2 0.863 4.163 (ns)
Walking dragline 10 727 189.8 0.261 2.63 842.0 0.807 1.949 (**)
Gumfoot 16 793.3 443.8 0.559 1.64 907.9 0.96 0.333 (ns)

Table S4 Fracture mechanics analysis correlating bundle equivalent diameter with tensile strength for N. cellanus, using the relationships & % VENA and 0 % IA/d for each

silk bundle type, presenting coefficients of determination (r?), statistical significance (p values).

Silk Type d [um] E [GPa] o vs VE/d o vsE/d o ys\l/d g vs/1/d
p-value R? p-value R?
Drop-down dragline (N4) 1.35 11.77 0.6167 0.0936 0.1086 0.6306
Drop-down dragline (N2) 0.83 12.46 0.0114 0.7530 0.3899 0.1504
Walking dragline 1.31 10.01 0.0001 0.8708 0.0088 0.5968
Gumfoot 1.95 11.00 0.0006 0.5835 0.9449 0.0004




On the internal mechanical properties of silk bundles and their fibres

As shown in the last sections, one of the most important properties of the silk bundles
is their variation of mechanical properties. Our SEM images confirmed that the bundles of P.
phalangioides are composed of fibres running in parallel, fibres that can be found both in
contact or distant from each other. The behaviour of fibres in parallel is a well-studied subject
1418 Tn its simplest theoretical implementation, the load carried by a bundle of fibre can be
computed using Hooke’s law: the force at each strain corresponds to the sum of the load carried
by each fibre in the bundle for that value of strain, i.e. a bundle of parallel fibres has a stiffness
equal to the sum of the stiffness composing it. This simple formulation is a consequence of the
linear elastic model, and thus has to be applied carefully when dealing with high non-linear
materials, as spider silk. Positive and negative interactions can arise from, to name a few:
crossing interaction between fibres due to coiling!® 17; stress propagation from one fibre to the
other after partial fracture of the fibres inside the bundle'’; friction-driven interactions between
the fibres '8; the presence of hidden lengths inside the bundles '% 20, As a result, the strength
and toughness of a bundle can be extremely different from the simple linear combination of the
strengths and toughness of the fibres forming it. However, given specific experimental
conditions, some assumptions still hold.

In our experiments, fibres are perfectly clamped at the two extremities and are pulled
at a constant strain rate, by applying a displacement. A system of any number of clamped fibres
in displacement control follows, in the linear region, Hooke’s law 5. This means that the
stiffness of a bundle near the origin, i.e. the initial slope of the load-displacement curve, is
indeed given by the linear combination of the fibres forming it. To confirm this, we
implemented a Finite Element Method (FEM) to confirm that different contact scenarios
between fibres do not affect the linear phase of bundles, using different geometries inspired by
the SEM images we have collected (Figure 7). We used the linear solver MOFEM?!, Table 5
presents the parameters used in this work, however these do not influence the results presented
here, and any other set of parameters could be chosen. Our model revealed that the contact
between the fibres does not affect the load carried by the bundle in the elastic region, as
expected by a linear relationship and a uniform material: even when considering complete
fusing between four fibres, the load measured it is coincident with the one measured when the
fibres are separated from each other, and with the one calculated by applying Hooke’s law.
This indicates that, for small deformations and in a quasi-static experiment, it is possible to
apply linear elasticity to fibre bundles of any geometry. This holds true even if changing the
position, stiffnesses, and non-linear response of the fibre forming the bundle: all of these
parameters affect the bundle only after partial fracture is observed, and thus mechanical
properties change how stresses redistribute along the now non-uniform cross-sections along
the bundle length. To study if this could partly explain our experimental results, we investigated
partially fractured bundles using the FEM described before.

The FEM analysis confirmed that partial fracture of our bundles should lead to total
failure of the bundle. The stresses accumulate at the interfaces of the broken fibre and the
contact between different fibres, as shown in Figure 8. When considering realistic ranges for
silk-based materials, the found stresses at the interface are high enough to lead to immediate
crack propagation, and thus total bundle failure. This result is in agreement with the results
shown in Table 1 and Table 2: the strengths follow a Weibull distribution, and the cross-
sectional area and the young’s modulus of each bundle correlates with the strength, indicating
that the overall behaviour of the bundles is similar to the one that it would have if it was a
single fibre of equivalent cross-section. Indeed, our load-elongation curves do not show



multiple prominent peaks: this indicates the absence of multiple, independent fractures
happening in the bundle, while it is compatible with the presence of a single avalanche, which
causes total failure of all the fibres for the same strain value's.

Figure S7 Four geometries used in our linear elastic Finite Element Method to verify stress distributions in the
bundle during the elastic phase. Different Young’s moduli can be assigned to different volume portions for each
mesh.

Table S5 Overview of simulation parameters used in the FEM model. We note that the chosen parameters do not
influence the results presented in this study.

Symbol Parameter Value

v Poisson’s ratio (both fibres) 0.3

L Fibre length (both fibres) 10 #m

R man Fibre diameter (small fibres) 1 #m

Ryig Fibre diameter (big fibres) 2 Um

Esim Simulated strain 0.1

T, big Stress at break (big fibres) 0.5 GPa

Eyig Young’s modulus (big fibres) 2.5 GPa

€b, big Strain at break (big fibres) 0.1-04

E man Young’s modulus (small fibres) 0.1 GPa— 25 GPa
T, small Stress at break (small fibres) 0.1 GPa—1 GPa




Figure S8 Stress distributions found for different geometries and partial fracture configuration. A) Intact bundle.
For every intact bundle, the stress distribution found was homogeneous outside of the region where the fixed
displacement was applied, and the ratio between the stresses in the different materials reflected the ratios between
the different Young’s moduli for every parameter combination. B) When a partial fracture is observed in one of
the fibres, here a fibre of bigger diameter, stresses concentrate at the interface with neighbouring fibres for all
contact scenarios. Stresses at the interface between the neighbouring fibre and the fracture are = 100 times higher
than in figure A. C) Identical scenario for a fracture happening on a smaller diameter fibre. Here, stress
concentrations lead to stresses = 4 higher than in Figure A. In both figures B) and C), stress concentration leads
to an avalanche that leads to immediate fracture of the entire bundle.

Another phenomenon which is known to decrease the effective Young’s modulus in the
linear region is the presence of non-heterogeneous slacks inside the bundle, leading to fibres
not participating to the stress load until a certain strain threshold -2, In our SEM images, and
in our mechanical data, we have, however found no typical signs of these slacks, as a later rise
of the slope of the load-displacement curve, or the presence of ribbons and other geometrical
features in the bundle. Finally, the collection rate at which silk is produced is known to possibly
affect the mechanical properties of silk: however, it was tested for 7. clavata by Yazawa and
Sasaki?? that collection at different speed and humidity conditions did not have a significant
impact on the Young’s modulus.

The practical consequence of this conclusion, is that we expect the Young’s modulus
of bundles based on single fibre types to be lower than heterogeneous fibre bundles. This
behaviour is observed in our data regarding N. cellulanus: dropdown draglines made of 2 and
4 fibres have a relative standard deviation of 19.93% (N = 7) and 8.02% (N = 5), respectively.
These values are compatible with the range of relative standard deviations found in literature
for single major ampullate fibres of Araneidae >>-2*. The relative standard deviations we found
for heterogeneous bundles is higher, with a value of 37.91% for gumfoot silk bundles (N = 17)
and 31.04% for walking draglines (N = 10).



Our results for P. phalangioides reveal however a richer variety of moduli. Bridging
lines are produced by this spider species using only minor ampullate silk: however, the
aggregated data shows a relative standard deviation of 41.77% (N=17). The same is true for
manually collected aciniform silk: however, its relative standard deviation 52.79% (N=10) is
affected by the low value of its Young’s modulus. Dropdown draglines silk threads, a bundle
known to be composed by two major ampullate silk threads, show a standard deviation of
27.18% (N=12).

We have also considered the slope of the curve in the load-strain curve, without dividing
it by the measured cross-section (or, in other words, we multiply the Young’s modulus by the
cross sectional area for each bundle). This value, is usually a bad reference to identify the
material type, as it does not consider the possible geometric variations of silk. The relative
standard deviation values for this parameter are indeed twice as high for gumfoot bundles of
N. cellulanus than what is found for the related Young’s modulus; however, for P.
phalangioides, the dropdown dragline silk shows a relative standard deviation of 19.65% for 2
fibre draglines and 13.71% for 4 fibre draglines. When focusing on single individuals, the
results about the stiffnesses of the bundles become even more revealing: 2 fibres dropdown
draglines shows an average relative standard deviations across specimens of 15.40% (N=4);
walking draglines shows an average relative standard deviations across specimen of 8.72%
(N=5); bridging lines show an average relative standard deviation across specimen of 23.20%,
a result particularly meaningful when compared to the 33.59% value obtained when
considering all stiffness values together, independently from the specimen, or all the Young’s
moduli, 41.77%. In practice, this indicates that the silk properties of these bundles show a
higher consistency before normalisation, and when considering each individual independently,
as if each spider he’s able to produce materials and bundles capable to reach a certain force
rather than a certain stress. This also explains the importance of the young’s modulus in the
strength scaling predicted by the Griffith criterion presented in Equation (4) and discussed in
the previous section. This extreme variability and adaptability of the silk mechanical properties
could be an advantage for a cosmopolitan spider as P. phalangioides.

Due to the extreme variability of silk properties of single fibres and fibre bundles, it is
unfeasible to try to derive the composition of the bundles of P. phalangioides starting from the
biological and mechanical constraints known. In particular, bundles containing both major and
minor ampullate silk do not show any significant difference between their behaviour; this is
complicated by the fact that bridging lines, known to be made only from minor ampullate silk,
show a Young’s modulus compatible with the dragline bundles, independently from their
number of fibres. The results presented in this work suggest that we should reconsider how we
historically gathered data regarding the mechanical properties of spider silk, as for P.
phalangioides, and potentially other spiders, the average values of the mechanical properties
of their dropdown draglines does not capture the observed complexity. Future studies should
focus on the internal composition and mechanics of these extremely variable bundles.
Moreover, we highlight the importance of considering naturally produced silk in similar
studies. This study suggests that spinning conditions and spider behaviour could have a higher
effect on spider silk properties than what is currently considered in the literature.



On the consequence of a lack of interaction between fibres in clamped bundles under
uniaxial tension

Our study shows that P. phalangioides silk bundles can include major ampullate fibres,
minor ampullate and aciniform fibres. In this study, we also discuss how the empirical,
numerical and statistical analysis all validate the assumption that the fibres included in these
bundles are in strong contact, and how this affects the behaviour of the bundle after first
fracture, but not before so. To clarify this concept, we here show a numerical solution of the
Fibre Bundle Model (FBM) applied to a six fibre bundle!> . We note here, that for a stiffly
clamped system of fibres, non-interacting between themselves, and for a low number of fibres
with discernible properties (i.e., that do not need to be represented as a distribution function),
the FBM reduces itself to a simple problem of non-linear fibres in parallel under externally
applied monotonously increased strain. The properties of each fibre type are shown in table.
The critical strain is assumed to be normally distributed across a mean value, with a width of
the distribution equal to 10% of the mean critical strain value. As the fibres are assumed to be
non-interacting and under monotonous stretch, we could also consider non-linear behaviours??
although that wouldn’t change qualitatively the result shown here. We report here one
exemplary result in Figure S6. We can see from the theoretical predicted curve that a failure of
a large, load-bearing fibre, should lead to a distinct peak in the load-displacement curve. Each
fibre fails independently, releasing its elastic energy to the infinitely stiff boundary condition.
This result is independent from the specific properties assumed for the fibres. This is not what
we observe in the empirical curves of our bundles, where the curve has a very smooth
(draglines, bridging lines) or smooth (gumfoot) shape. According to the FBM, if a bundle is
made of two identical fibres, differing only for their critical strain value, the load measures at
that point would perfectly halve. This is in deep contrast with what we observe in our empirical
results, where curves proceed in a smooth way, except for some small peaks observed in the
curves of gumfoot threads. Moreover, we never observe surviving aciniform fibres, despite
their nominal large critical strain, which should frequently surpass 40%.

The FBM explains that?> load distribution could also be mediated by the presence of a soft
clamping mechanisms able to transmit forces between the fibres through the edges, similar to
what happens in a fibre reinforced composite with perfectly aligned fibres?. The theoretical
investigation of this topic goes beyond the scope of this study: however, we have seen no
evidence, in all of our tests on natural and artificial fibres, of such mechanism being present
while using our tensile test machine. Furthermore, when testing artificial fibres or spider
bundles of different spider species?’, we were able to discern perfectly the forementioned peaks
in the load-elongation curve, in accordance to what predicted by the FBM.



Table S6 Parameters for FBM model simulation for the theoretical behaviour of a non-
interacting bundle of three pairs of fibres with distinct mechanical and geometrical properties.

Fibre type Number of Diameter (um) | Strength (GPa) | Mean critical
Fibres strain
I 0.4 0.99 0.19
II 0.3 0.2 0.5
I 0.89 0.5 0.4
i
e [ |

03

Strain [mm/mm]

0.6

Figure S9 Theoretical quasi-static stress-strain curves of the expected mechanical behaviour of
a bundle of three pairs of non-interacting fibres with different properties.




Method

Artificial fibre bundle preparation and testing

Nylon 6,6 fibre bundles (length 1 m, filament diameter 0.01 mm, 14 filaments, tex
number 1.3) and low-density polyethylene (LDPE) fibre bundles (length 1 m, filament
diameter 0.044 mm, 90 filaments, tex number 110) were purchased from Goodfellow
Advanced Materials (Huntingdon, Cambridgeshire, UK.). Individual nylon and LDPE fibres
were carefully separated from the bundles and recombined to create mixed fibre
configurations. The fibres were mounted on 11 mm X% 11 mm square-punched black
cardboard frames lined with double-sided adhesive tape. Four fibre configurations were
tested: single Nylon 6,6 fibre, single LDPE fibre, one Nylon—one LDPE bundle, and a bundle
consisting of three Nylon 6,6 fibres and one LDPE fibre. Tensile tests were performed using
a T150 Universal Testing Machine (KLA, Milpitas, California, USA) to record force—
extension data. Tests were conducted at a constant extension rate corresponding to 1% strain
per second until failure, with a load resolution of 50 mN and an extension resolution of 35
nm. For each configuration, five independent samples (N = 5) were tested.

From Figure S10, the stress—strain curves show that the Nylon 6,6 fibre exhibits much
higher tensile strength compared to the LDPE fibre, which displays softer and more ductile
behaviour. When the two materials were combined and tested together, the resulting stress—
strain curve showed a distinct stress drop at around 35% strain, corresponding to the failure
of the Nylon 6,6 fibre. In contrast, the LDPE fibre exhibited a strain at break of
approximately 110%. Increasing the proportion of Nylon 6,6 in the bundle (Nylon6,6-LDPE
[3:1] configuration) resulted in a higher stress at break compared to the Nylon6,6-LDPE
[1:1] configuration, although the strain at break remained similar between the two
configurations.
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Figure S10 Exemplary stress—strain curves of individual LDPE (blue line) and Nylon 6,6 (yellow line) fibres, and
of mixed bundles composed of Nylon 6,6 and LDPE fibres (green and red lines). The first bundle includes one
Nylon 6,6 and one LDPE fibre (green line), while the second bundle contains three Nylon 6,6 fibres and one
LDPE fibre (red line).

Figure S11 Morphology of a gumfoot thread illustrating areas where the individual silk fibres are not properly
aligned or in full contact, forming loop-like or separated regions within the bundle structure.



Table S7. Sample sizes for each silk thread type from Pholcus phalangioides and Nesticus
cellulanus used in mechanical property analyses.

Species | Silk type Number of spiders Number of samples
Drop-down draglines (N2) 7 12
Drop-down draglines (N4) 9 11

S

2 Walking dragline 5 16
8o

=

S <y - .

= Bridging line 8 17
=

],

S Gumfoot thread 6 14

?

= PMS (forcibly silked) 4 1
Aciniform (forcibly silked) 5 10
Drop-down draglines (N2) 2 7
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§ Drop-down draglines (N4) 2 5
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§ Walking dragline 2 10
2

§ Gumfoot thread 4 10
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Figure S12 Scanning electron micrographs of N4 dragline samples stretched to 0.1 mm/mm strain. (A) Sample
showing a thin surface coating that caused several fibres to adhere closely to one another. (B) Sample displaying
shallow scratch-like surface features between adjacent fibres. These patterns are interpreted as local surface
artefacts rather than mechanically induced deformation.
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Figure S13 Scanning electron micrographs of forcibly spun (A) posterior median spinneret (PMS) thread and
(B) aciniform fibres from Pholcus phalangioides. These images are provided for comparison only, as forcibly
spun fibres do not reflect natural spinning conditions.
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