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In this Section, we derive the dynamics of the ensemble-averaged density and crystallinity fields

to identify the steady-state force balance governing each field. We derive the density field dynamics

in an identical manner as in Ref. [1] and use a similar approach to derive the crystallinity field

dynamics.



Equations of Motion and Fokker-Planck Operator

We consider N interacting 3D active Brownian particles, where the position, r;, and orientation,
qi, of the i" particle undergo the following equations of motion:

1
r; = Upq; + EF?, (S1a)

q; = Q; x q;, (S1b)

where a = da/0t, Uy is the active speed, ( is the drag coefficient, FZC = Z#i F;; is the sum of
conservative interparticle forces on particle 7, and €2; is a random angular velocity with zero mean
and variance (€2;(£)Q;(#')) = 275"6;;0(t — t')T where 7p is the characteristic reorientation time,
d;j is the Kronecker delta, 6(¢) is the Dirac delta function, and I is the identity tensor. Here, this
mean and variance are taken over the noise statistics.

The noise-averaged N-body distribution function, Py, evolves according to PN = LPy where

the Fokker-Planck operator, L, is:

0 1 _
L= —Z [813- : (UO(Ii + CF?) -7y VE. Vﬂ : (S2)

where Vf“ = q; X 0/0q; is the rotational gradient operator. The adjoint to this Fokker-Planck
operator, LT, is:
L= U lpe). 0 | ign.yr S3
:Z OQH‘EZ' '%"’TR i Vil (S3)
i
This adjoint allows one to express the evolution of an observable O = <@> as O = <£T(§>, where O
is the microscopic definition of the observable. Here, expectations are now taken over the N-body

distribution, <@> = f7 dT'PyO where T' = {r™,q"} contains all N positions and N orientations

and « is the phase space volume.

Steady-State Mechanics of the Density Field

We now consider the evolution of the density field, p(x,t) = (>, d(x —r;)). This derivation
of the density field dynamics was previously performed in Ref. [1], using the same closures, ap-
proximations, and constitutive relations that we employ here. While a detailed discussion of this
derivation and the nature of the approximations and closures can be found in Ref. [1], we briefly

recapitulate the essence of the derivation here for convenience.



Using £, we find the dynamics of p to be:

p= <£TZ(S(X— r1)> =-V- <U0m+ EV : ac> , (S4)

where we have defined the polar order field, m(x,t) = (3, q;0(x —r;)), and the conservative
stress, o¢ = %<ZZ Z#i rijFijbij> with the distance vector r;; = r; — r; and bond function
bij = [if ANI(x — 1 + Ary;).

The polar order field obeys its own evolution equation. Before examining the resulting equation,
we introduce an approximation in the dynamics of all fields whose microscopic definition includes
at least one orientation: the conservative interactions act to reduce the effective active speed from
its ideal value Uy to a field-dependent value. This dependence will ultimately require additional
constitutive equations (see Ref. [1]). Using this approximation, the evolution of the polar order
field is:

m = <£T quﬁ(x - r2)> =-V- (UOUmQ> - zm, (S5)
i

TR

where we have introduced the nematic order field Q = (>, 9:9:0(x — r;)) and the renormalized
active speed of the polar order field UpU . The nematic order field undergoes its own evolution

equation:

2 0O~ 6 ~

Q= <ﬁT Zi:qZ'Qi(S(X - I“z')> =-V. (UOUQB> T (Q - gl) ; (S6)
where we have introduced the third orientational moment field, B = (>, 9:9:9:9(x — r;)), and
the renormalized active speed of the nematic field UOUQ. Notably, the traceless nematic order

parameter, defined as Q = Q — pI/3, has the following dynamics:
1

. o _qe 1 1
a=-v - (0,0%) - ti- Sq- v (0,09 - tivgm-Lv.oc) - Laq (57
3 TR 3 3C TR

While B undergoes its own equation of motion, we define B = B + a - m/5 (where a is an
isotropic fourth rank tensor with cyji = 0ij0k + 0ixdj; + d4d;, in Einstein notation) and use the
closure B = 0. This closure allows us to simply express the third orientational moment with the

polar order field. The evolution of the nematic order field is then:

5 3) 3¢

Inserting the steady-state solution to Eq. (S5) into Eq. (S4) we have:

Q =-V. <U01m (SUQ — 1> — iV . 0'0> — TEQ (88)
R

p=-V_- (év-aact%-i.v-oc) , (S9)



where we have defined the active stress o, = —CUOZOUmQ/Q with the run length £y = UyTg.
We now explicitly look for the quasi-1D dynamics in the z-direction. Defining P = —oZ + pc

where pc = —0F and assuming the polar and nematic order fields relax faster than the density

field (quasi-static density field dynamics), we find:

. 0 (10 0
pP = & <C82P> = _E (pr)a (SlOa)

and identify .J, = Lf, = —COP/dz, mapping these dynamics to Ref. [2]. We see that L = (! and

therefore find the flux-driving force to be:

0, 0 puk  L3U O [ Op2™
fp__azp__(?z [pc—l_p“t 20 9z v 0z ’ (S10b)

bulk —
act —

where we have defined the active pressure p CUplpUp/6 and, in line with our quasi-static
approximation, have substituted the steady-state solution to Eq. (S8), the steady-state solution
CUym, = —do**/dz, and the approximation U™ = UQ = U into P and truncated at second order
in spatial gradients. Equation (S10b) immediately yields the “chemical pseudopotential” u, = P

with 7,, = —1 and 7, = 0, noting that 0/0z — d/dz in a steady-state.

Steady-State Mechanics of the Crystallinity Field

We now consider the evolution of a crystallinity field, ¥y (x,t) = (3, ¥id(x —r;)), where 1
provides a measure of the local crystalline order around particle ¢ that in principle can depend on
the distance vectors r;; between ¢ and all other particles j. This derivation has not been performed
previously to our knowledge, however we aim to parallel the derivation of the density field dynamics

when possible. Using £ we find:

v = <UZ%5(X—U>> = =V - Jy + Upm" + sc, (S11)

where we have defined m¥ = <Zz PFETR gﬁ’;é(x - ri)>, so = % <Zl > F]C . % (x — ri)>, and

the crystallinity flux Jy:

3, = <Z (qui + 2FC> 5 (x — ri)> . (S12)

i
While the flux is clearly not identically zero, we nevertheless approximate it as negligible in com-
parison to the generation terms, |V - Jy| << |sy|. This results in model A dynamics for the

crystallinity field and allows us to apply our recently proposed coexistence framework [2].



As was the case in the previous section, m¥ undergoes its own evolution equation:
nY = ( ctf Wi s — v (0T QY + U T O — Bt s1
me = Zl:zj:qj.arj (x—ri) ) =— '<0 J Q1)+ oUs QQ—am, (S13)

where we have defined:

Q¢ = <ZZqiqj . Zr%é(x — rz)> , (S14a)
<zzij P it >> , (S1ab)

and the renormalized active speeds UOUT and Uoﬁ;n

We now seek expressions for the evolution of Q}p and Q;ﬁ Beginning with Qf

@¢—<ﬁzzij st
—=QY = —=QY = 4 - 2 0 Gv,bz
:—V~<U0UJ B2>—|—UOUs BS_TRQED+7'R<zi:Zj:ZaI' ory ( —I'i)>
Y b s ), (515
TR . - - q;9; qrqk) - arjark ) 5

where we have defined:

BY = <ZZZquJ Br;0ry a Cqpo(x — )>, (S16a)

. 93

lesb = <ZZZZQijQZ3(.M;iZam5(X_I’i)>, (S16b)
i j k1 J

_pY _aY
along with the renormalized active speeds U()Ug22 and UpgU ?2 . We now recognize that as each ;

is a function of the bond vectors r;;, 0v;/0r; = — Z#i 0v;/0r;; and Ov;/0r; = Ov;/0r;j. This

implies:

(ST o) - (T80 (50 Do) <o, s
Ty rala I; Tk

and:

2,1,
<ZZZ (9jq; + qrqr) : 8§'§;k5(x — rz)> =
i J k J

(X (Sam: 5 [Z

% awz
+
- - r; gﬁ; 8rk]

9 |0y 0
‘1‘%011@(11@58”! L Z(;fi]) x—rl)>—0 (S17b)



and hence:
Q;ﬁ =-V. <U0UJ2B2> + UOUQ2 Bg - —Qw (S18)

We examine the evolution of Qlf
X O,
a1 = (£ Yaa - G
i J
= -V (VT3 2B, +U0UQ1B2——Q1/’+7 Zzam 1)
! Or; !
Oi
- <ZZ (qjq; + qiq;) - 87#5@( - r¢)> , (S19)
TRA\T rj

where we have defined:
3 _ L A
Bl N <ZZ:ZJ:quZqJ : a—r](S(x — I'Z)> N (820)
oY —OY
and the renormalized active speeds UpU ;' and UgU/". We again find:

<ZZ sz , > - <Z ?;fz + ?;fz 5(x — r1)> =0. (S21)
bt

)

Contrasting this, we find:

<ZZ q;9; + qiq;) - a—w’ (X—rz)>

0 o;
=<Z 2qiq; 6111 + ) (aq; + i) - af, 6(x—ri)>
J

i i
<Z Z q]q] qqu : awl < - rl)> 7& 07 (822)
i i Ti

which makes one unable to obtain closed expressions for the source of iy at this order. To
circumvent this, we assume that this vector can be expressed as the product of an isotropic second

order tensor and <Z > glfl (x — r,)> which vanishes. We then have:

2 —OY ~ —_OY ~ 4 ~
Q/=-V. (Uon;21 B1> F UM B, — —QY. (S23)
TR
To close these equations, we introduce the following forms for B%:

~ 1 O, 1
Y _ RpY { v _ )\ —RY ¥
B, =B, + 3I< % Ej q; o, d(x rz)> =B + §Im , (S24a)



for ng
B -pi (ST g )

0 o o;
_ v . _r) ) =BY
= BY + <§1 % U 5 | o + k%éi or, 6(x rz)> By, (524b)

and for B}f :

. o
B0 (ST T T ar g o st

o 0 8% O
:ng+<§i:§j:§k:qj'(‘)rjm. Z or, 5(x—ri)> :Bgf. (S24c)

We then introduce the closures Btf = 0, Bg = 0, and ng = 0 and substitute the result into
Egs. (S18) and (523), finding:

B 4 -~

QY = -—@¥, (S25a)
TR

3 —_O¥1 4 ~

QY =-V (UOU?1 3m¢> = aQ;/’. (S25b)

We now return to Eq. (S11). Solving Eq. (S13) and substituting the result into Eq. (S11) we

have:
UoloU UoloU™
by =~V (OOQJQ%) + Q3+ sc (S26)
Substituting the solutions to Eq. (S25) we find:
. £2Umw —aY
vy =V - %V <U_] ! Uom¢> + sc. (S27)
We now use the steady-state solution Uym?¥ = —s¢ to find:
. e
Yy =sc— V- %V (UJ sc> (S28)

Moving to a quasi-1D profile oriented along the z-direction, the dynamics of the crystallinity

field are:

j (50 (0 bulk
Yy =Mfy = Sc—ﬂa <U8z (U ))7 (529)



where we have truncated at second order in spatial gradients by retaining only the bulk part of
S b
the conservative generation (s¢ = sg‘ﬂk + 3(02)) and assumed UT = Uy"' = U. Mapping these

dynamics to Ref. [2], we may set M = 1 and identify the generation-driving force as:

0 (-0 (+ buk
fy=sc— 2455 <U8z (USC )) ; (S30)

where 0/0z — d/dz in a steady-state.

DERIVATION OF COEXISTENCE CRITERIA

With the expressions for f, and f, determined in the previous section, we now derive the
nonequilibrium coexistence criteria used in the main text following Ref. [2]. We note that as f, is
the spatial derivative of —P, we can immediately identify that the steady-state condition of the
conserved field (in flux-free boundary conditions), f, = 0, can be expressed as P = const, i.e., the
dynamic pressure must be spatially uniform. In the language of Ref. [2], P is the pseudopotential
of the conserved field, u, = P. As spatial gradients vanish in the bulk coexisting phases, the

steady-state conditions P = const and f,; = 0 can be immediately converted to three coexistence

criteria:
pbulk (Pf, w‘f/) —pbulk (0°, Qb?/) _ zpcoexist, (S31a)
Stéulk <pf’ w‘f/) =0, (S?)lb)
Sg}ﬂk (p57 wi?/) =0, (8310)

where PPk = pg‘ﬂk + pPulk and Peoexist is a constant that must be determined. We therefore seek
one additional equation to determine the four variables of interest: p/, p*, w{;, and ¥y,

In equilibrium, the final criterion is the Maxwell construction. Noting that it is the dynamic
pressure that must be spatially uniform (and not just the conservative contribution), the equilib-
rium Maxwell construction for active solid-fluid coexistence is:

p® )
/ (Pbulk(p’ ¢ik/) . PCOQXISt) dp—l — O, (832)

of
where ¥ (p) is defined to satisfy s2(p,v7,) = 0. Combining this Maxwell construction with
Eq. (S31) is what we refer to as the “passive” criteria in the main text — this is what was used in
a previous attempt to quantitatively predict active solid-fluid binodals (Ref. [3]). However, as we

will show, this integral is generally nonzero and path-dependent as it requires the Gibbs-Duhem

relation, dG = p~'dP + Yndfy (G is the chemical potential in equilibrium), to hold.



Following Ref. [2], we introduce an ansatz of a generalized Gibbs-Duhem relation:

dg dP dfy
= =g, — &, S33
dz P dz Yz (833)
where £, and &, are “Maxwell construction variables” which depend on p and 1y but not their
spatial gradients while G is a “global quantity” that depends on both p and vy and their spatial

gradients. In particular, we expand G as:

d*p Py dp (2,1) dp dipy 21y ((dvv
_ cbulk _ 5(2,2) (2,2) _ a2,1) . a2
G=¢ gp 12 -G, 1.2 9o (dz) gpw 1 d Gy o . (S34)

where GP"% and each g§2’2) and QZ-(;’I) for i,5 € {p, 1} are equations of state that depend on p and
1y but not their spatial gradients. When &,, &y, and the coefficients of G can be determined, G is
spatially uniform in steady-states and GP"¥ is equal in coexisting phases. This final criterion can

be expressed as a generalized Maxwell construction:

e

& .
/f (:Pbulk(p’ ¢i0</) . Pcoex1st> Clgp —0. (835)
gp
We now expand the conservative pressure:

bk 22040 ead®Pv @) <dp>2 _ gy dpddy p3D (dd’V) . (S36a)

bo=Pbe = Pco g2 = Pev "gam T Pee \ gy PCob gz "az ~ Pov \d

and generation:

bulk _ ((2.2)47P d2P $(22) d Yv @21 (@)2 _ 942 pdpdipy AE) <de> ., (S36b)

POTSCT TR0 g2 T 0w T T %0 \ gy Covdy e PO\ Td

bulk  cbulk (2,2)  (22) (2,1) (2,1)

where pZ™, sg'™, and each p/5;™, 5507, PCij s and 5Cij for i,j € {p,1} are equations of state

that depend on p and iy but not their spatial gradients. We now define:

-2
2, GU o™

PR R (S37a)
po (02;) e?zzé aﬁ;ik’ ($37b)
v L)
o S AL )
Py = c¢w+ 2 <81Zuvlk Oy Uagzbg;k)’ (59T

and:

bulk
(22) _ (2 2) U (0s¢ butk OU
s + (U L (S37f)
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(2.2) _ (2 2) 02U (Uasbulk L gbulk 0U> (S372)

Sy cv T \"auy 0 By

2 .bulk bulk 277 7T bulk 7T
(N)—S&J+§ZP]<U88 2ans +s%“81]>+¢%]<U88 +s“maU>]

% 0p? dp Op 0p? op op ¢ ap
(S37h)
(2 H @) 60 o7 7825tc)1u1k @asgulk aU asbulk bulk 82U )
& SCW%[ U<Uapa¢v T o0 ouy Touy 0p T oy (837i)
ou Ospulk | OU oU (—oskik | . oU )
+op (005 v ) + 55 (755 + o0 a5y | (530

(2,1) _ (2,1) 670 = —aQStC)«ulk 9 8U 8Sbulk bulk 82U aU Uasblﬂk bulk aU
v T SouTy [U <U a3 ooy ovy € a7 ) Tauy \Uaew T agy )|

(S37K)

such that:

d? d? dp\? dp di 21) ((diby \?
_pbulk _ (2,2)¢°P (2,2) 14 (2,1) [ AP\ Hp(2,) AP AVYV 5(2,1) 14
P =P Py 7.2 Pw 2 — Py ( dz> ZPW o P < P , (S38a)

d? d*y d dp dy dip
bulk (220 P  22%Pv  (21) (aP @nap vy (21 v
o =sc =5, A2~ v gz T e <dz> ~ 28 dz dz S < dz > ’ (S38b)

Substituting the expressions for P and fy into the generalized Gibbs-Duhem relation [Eq. (S33)]

and evaluating derivatives, we find:

og™dp | 9GM N dpy L d’p  Leaddv oGS 4 9g@D d*p dp
Op dz Oy dz Pdz3 v de3 op e dz? dz
2,2
%7 | g @% - gen | Eovde (9607 ) duv diy
Ny sz dz Yo dz2 dz My vy dz2 dz

2,1
095 (dp)* _ dov\*_ (068" 06"\ (dp\* vy
dp dz &DV dz oy dp dz dz
063" 99"\ (div\’dp _ . [0P"Ndp 0P dby  ond ooy
dp My dz dz " ?| 0p dz My dz P dz? vde3

(272) 2 (272) 2 (2’2) 2
— (a% + 273;),2)71)> @@ _ (87)’) _1_73(2’1)) dev _ (8,Pw + 7)(271)) d w\/@
p

dz? dz Ny P ) d2? dz p pY dz2 dz
2,2 2,1)
_ 87)1(& ) 4 9p2D) >y dapy 877é2 ) dp 3 877( diy \?
Ny vy dz2 dz dp dz 8¢V dz

37;(2 1) ) 373,()12;1) dp 2 vy 873;21;1) . 873/()1251) Ay \ 2 dp . Dsbulk dp+83léulk dipy
oYy op dz dz ap oYy dz dz v dp dz OYy dz

52 2 d’p _ 4(22) Py 3822’2) 1 9g(2D) d*pdp _ 855)2’2) FACAY d*p dypy
A7 op Ny P d2? dz

dz? dz
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2,2) 2,2 2,1
B 885/) N 8(271) deV @ B asq(ﬁ ) N 28(271) d2wv dwv B 681()%1) @ 3 B 8875)1/1) de 3
op p dz? dz Ny 4 dz2 dz dp \dz Ny dz

2,1) (2,1) (2,1)
— 83%1) + 88/}#} @ ’ dv . 881/”# + 889711 dipy ’ @ (S39)
Ny dp dz dz ap Ny dz dz |’

Matching the coefficients of each term of order (d"p/dz")*(d™py /dz™)" (where n¥ +m! = 1 or 3),

we find a system of partial differential-algebraic equations for £,, £y, and each of the coefficients
in G:

6gbulk _ afpbulk B asgulk

TR rel e e (S40a)
8gbulk 87)bulk o Sbulk
T s T (340b)
G332 =£,PP) — 4522, (S40c)
G =£,PP? — £4s7?, (S40d)
69(2 2 87)(2,2) 88(2,2)
5 2621 =¢, a"p +2P2D ) gy 5p +2s30 ), (S40e)
T 87’22’2) (2.1) 255 @)
My TG = Oy TP ) Oy o) (8408)
89 (2,2) op22) 552
99y L) _ ¥ (2.1) ¥ (2.1)
p + g = ( p + P/Hﬂ — &y o + 5,0 , (S40g)
0G0 o P 2,1) 95y ER
2,1 2,1 2,1
06" = 0P £ 055" (S401)
ap " op Y op
(2,1) (2,1) (2,1)
Oy _o P " & 054y, (540})
My P op oy
0g? | 09 o (0P 0P o (osksh | 9] (S40K)
oy op "\ ouy ap Y\aewy T o |7
oGl oGty . op) PGy . s assY S101
ap " 8¢v o\ e Tauw | T T Ty | (5401

At finite activity, these equations do not have a solution. In the limit ¢y — 0, the system is

effectively passive and we find £, = 1/p and &, = —1n, recovering the equilibrium Gibbs-Duhem

relation and Maxwell construction. In the high-activity limit, ¢, — oo, all p(gf), sgf), p(gwl),

(

and scm) for {p,%} can be ignored as the active contributions at this order scale as ¢3. In this
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limit, Eq. (S40) cannot be solved, however Eq. (S40c)-(S401) can be, where one finds £, = p2k and
&y = 0. As shown in Ref. [2], when this is the case, the final coexistence criterion is an approzimate
generalized Maxwell construction:
bulk (5 s

/p Z jk(:;;‘;) (Pbulk( P by) — Pcoexist) dp2 ~ 0, (S41)
which is path-dependent and generally only vanishes when evaluated along the integration path
that corresponds to the spatial coexistence profiles (which is what we would like to circumvent).
Evaluating Eq. (S41) along 1), thus represents and approximate form of the final criterion -
combining this with Eq. (S31) is what we refer to as the “active” criteria in the main text, noting

that it is only well-defined (albeit still approximate) in the infinite activity limit.

EQUATIONS OF STATE OF ACTIVE BROWNIAN SPHERES

Ultimately, the application of the coexistence criteria derived in the main text will require
equations of state for p'gjulk, U, and 1y, Simulation data can only be obtained for systems in which
a state of homogeneous p is at least locally stable. Consequently, it is not possible to obtain the
complete relevant functional dependence of the required state functions directly from simulation.
However, application of our coexistence criteria only requires knowledge of the equations of state
at Yy = 1}, (p) for each density p. We therefore proceed by devising a simple simulation protocol
to obtain as much of this limited data as possible. We then use this data, along with the known
physical limits we require our equations of state to capture, in order to develop physical and
semi-empirical bulk equations of state.

We now seek the minimal functional forms of these equations of state that capture the phys-
ical limits we impose (e.g., established equations of state for the fluid states and passive crystal,
diverging active crystal pressure at close-packing, zero crystallinity at zero density and maximal
crystallinity at close-packing) while capturing trends in our data. The chosen forms will necessarily
not be unique, however we opt for simple forms that minimize the number of tuning parameters. We
then determine the values of the parameters in the equations through straightforward regressions

in Python.

Physical and Semi-Empirical Bulk Equations of State

To construct the ABP solid-fluid phase diagram by applying our derived coexistence cri-

teria, we need equations of state for the preferred crystallinity, ¢} (¢;40/D), and pressures,
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(a) (b) (c)

Sim. EOS 4/D ;
204 0 == o005 ,’ 0.014 2.0 I
V== 007 ] 1
1564 O == 009 Ui 1.5+ Iy
0.010
—bulk ¢ —-— o8 /7/' —bulk bulk /71'
Pc 104 & == o2 7/ act 1.0 7,
v, 0.006
0.5
0.04 ooesEES 0.002-
L)

FIG. S1. Conservative interaction (p2%), active (pP4k), and total (PPuk) pressure equations of state at low

activity. Pressures are nondimensionalized by the scale 6¢Uy /7 D?.

pg‘ﬂk (¢,%n; 4o/ D) and pPulk (¢, ¢n; o/ D), that accurately describe both fluid (yy ~ 0) and solid
(vn > 0) phases at all activities. We combine existing equations of state for an ABP fluid [1]
(developed for moderate activities £p/D > 1) and an equilibrium hard sphere fluid [4] to develop
accurate equations of state for ABP fluids at all activities. To extend these equations of state to
describe crystalline systems, we develop auxiliary equations of state [e.g., an equation of state for
the maximum possible packing fraction, ¢™**(¢n; €y/D)] to capture the effects of nonzero .
The active pressure of ABP fluids developed in Ref. [1] (pP%¥) correctly recovers the ideal

bulk __

gas pressure in the reversible limit (/o/D — 0), i.e., poi~ = pkpTact where the active energy

scale is kpTuct = CUplp/6. We extend pscutlk to nonzero vy by introducing an equation of state

@™ (1hn; 4o/ D) capturing the crystallinity-dependent maximum volume fraction:
1 V44 2 gact
¢Uo (eo> 1+ tanh(Awerton) [ 1= chettioo (% 5) + et (4. %)

~7D2\D 1+ <1 — exp [_27/6 (%)] ) =47 G ta D)

P2 (¢,9n3 4o/ D)

)

D

(S42a)

1+ tanh <B@>
2

t5 ((o/D, 63/ D) = (S42b)

where £§ = 18.8 x 271/6D is the MIPS critical point [5], ¢™2* (1py = 0;4y/D) = ¢RP = 0.645 to
recover the fluid pressure in Ref. [1], and ¢™® (1y = 1;4y/D) = ¢“F = 0.74 when the system has
perfect crystalline order. We emphasize that Eq. (S42a) recovers the active pressure in Ref. [1]
when ¢y = 0. We fit the coefficients A, = 10, D = 29, 2 = 30, and £3° = 3 x 2-1/6p.

act act
The conservative interaction pressure in Ref. [1] (pgmk’ABP) does not recover the equilibrium hard
sphere pressure (pgﬂk’HS) [4] in the low activity limit. We remedy this by including an interpolation

[through an equation of state x ({y/D)] between the conservative interaction pressures of an ABP

fluid and an equilibrium hard sphere fluid (for which we use a simplified version of that in Ref. [4]

that we verify on Brownian dynamics simulations of passive hard spheres). Extending pg‘ﬂk’ABp to
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nonzero Yy requires an equation of state capturing an empirical crystallinity-induced slowing of

its divergence [ (1; £p/D)] in addition to using ¢™** (¢n; €y/D) as the maximum volume fraction:

pgulk — x(ZO/D)ka)’ulk,ABP + [1 — (EO/D)] pgulk,HS, (S43a)
bulk, ABP - ¢? 1 2 bo £
pc (¢, ¥n;lo/D) =2 Wﬁm (1 — ¢ tanh(Acthy) [1 — e tioo <D’ 5)])
(S43b)
. 6kpT
pe™ S (6, kBT = —+ 0 (543c)

D3 1 — ¢/¢max’

where § (Y = 0;€9/D) = 1/2 to recover the pressure in Ref. [1] and A¢c = 10, c(Cl) = 5/6, and
cg) = 0.9 are coefficients we have fit. We again emphasize that Eq. (S43a) recovers the conservative
pressure in Ref. [1] when ¢y = 0 and £y/D > 1 and recovers the pressure of a hard sphere fluid
(see Ref. [4]) when ¥y = 0 and ¢y/D = 0. We have introduced the thermal energy kpT, which,
in systems of active hard spheres, is generally density (and crystallinity) dependent and can be
defined as kT = pPuk /p. We find no appreciable differences in the resulting phase diagram when
approximating this active temperature with that of ideal ABPs in 3D, kT = kpTact = (Uplo/6 [6],
however. We then use the simpler density-independent effective temperature, kgT,.t, when con-
structing phase diagrams but note that the density dependence of the effective temperature may

be more important for other systems.

The equations of state x (€o/D), ¢™** (¢Yn; Lo/ D), and S (¢¥n; Lo/ D) were empirically fit:

2(fo/D) = (1 — tanh(A, ) [tanh (log <f§ + 1> +ho <§§ %) [SZO/D N 1})]

(1)
c\ Tz . r<2)
+ tanh(10¢y) |tanh | log (fjo + 1) + t100 <§g, %) |:6(€0/£0) = 1] , (S44a)
™ (i Lo/ D) = ¢ + (37 — ¢F) tanh (Amaxthn) (S44b)
1
B (nifo/D) = 5 — tamh(Agu) |t (fo/ D, 65/ D) + P ton (/D 03/D)| . (8440)

where 4, = 10, 7t = %) = 10, Apax = 15.848, Ag = 10, ) = 0.4, ¢ = 0.175, and
Eg = 50 x 27Y6D are coefficients we have fit. The forms of these fits were motivated by the
previously discussed physical limits that we require to be met (e.g., ¢™** must be 0.74 when
Yy =1 and &~ 0.645 when ¢y = 0).

In order to use the equations of state in Eqs. (S42a) and (S43) we require an equation of state

for the preferred per-particle crystallinity, ¢}, which we fit an expression for ¥} (¢;4o/D) (see
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Fig. 1 in the main text):

Wi (6;40/D) = O (¢ — ¢ODT) tanh [exp <m¢¢ tey + Aw\/%)

—ry) (1-¢/67)

ey

(2)
AP +1n [Aff’) + (Lo/D)"¥ ]

X A$)+

where my =188, ¢y =—13.1, A, =005, AV =001, AP =AP =1+ = 116 and
1“1(5) = rl(f) = 2, are again constants that have been fit. The equation of state for the order-disorder

volume fraction, ¢OPT (£y/D), [see the inset of Fig. 1 in the main text] was determined to be:
14
QSODT (bo/D) = quII)HT + (¢RCP _ %%T) tanh (AODT log |:CQDTlg + 1:|> , (546)

where pQPT = 0.515 is the equilibrium hard sphere ¢“PT (determined by imposing that the equi-

eqm
librium Maxwell construction on ngIk’HS returns the hard sphere crystal-fluid binodals measured

in simulations [7]) and Aopt = 1.381 and copt = 0.909 are fitted constants.

We see that since our equation for ¢} in Eq. (S45) experiences a discontinuity at #OPT | our

equation for p?}ﬂk in Eq. (S43) does as well. This discontinuity is necessary for passive solid-fluid

coexistence, as the pressure (evaluated at v};) must be non-monotonic with increasing p in order

to find binodals.

bulk

Figure S1 shows the fits for p7*™ and phulk

act

for z, o™, 3, ¢OPT and ¢* into Eqs. (S42a) and (S43). While the fit for p%ulk is an overesti-

at low activities after inserting the expressions

bulk

ot 1S more

mate, the qualitative {y/D and ¢ dependent trends are captured, whereas the fit for p

quantitatively accurate.

Characterization of the “Pseudo”-spinodal

There are two spinodals, or regions of instability, in our dynamic pressure (Pb‘ﬂk = pg‘ﬂk + pb“lk)

act

of active hard spheres in Eqgs. (S43) and (S42a). The first is a true spinodal indicating that the
fluid phase (¢¥)y = 0) is unstable at certain densities. The fluid spinodal, which occurs above the
critical activity, arises from a non-monotonic active pressure and results in MIPS. The second is
a “pseudo”-spinodal which drives crystallization, even in the reversible limit. We distinguish this
spinodal as it indicates that states of intermediate density and finite 15 (which cannot generally

be prepared) are unstable.



16

FIG. S2. ABP pressure (nondimensionalized by the scale 6(Uy/7D?) at (a) low activity £o/D = 0.9, (b)

intermediate activity ¢o/D = 17.4, and (c) high activity ¢o/D = 22.3. p2'¥ is shown in dashed lines while

pgé‘tlk is shown in dotted lines.

For a solid-fluid transition to occur for passive hard spheres, p%“lk must contain a discontinuity

at the order-disorder volume fraction, #°PT. This discontinuity represents a region of instability
that occurs over an infinitely narrow range of ¢ where 13, adopts a nonzero value, representing
a pseudo-spinodal. The pseudo-spinodal widens at finite activity due to the non-monotonicity of
pPulk encompassing a finite range of volume fractions above ¢©PT. Figure S2 shows the widening

of this pseudo-spinodal, showing the active and conservative interaction contributions to PPk at

low, intermediate, and high activity (the same activities as Fig. 2 in the main text).
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