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MICROSCOPIC DERIVATION OF THE EVOLUTION OF THE DENSITY AND

CRYSTALLINITY FIELDS

In this Section, we derive the dynamics of the ensemble-averaged density and crystallinity fields

to identify the steady-state force balance governing each field. We derive the density field dynamics

in an identical manner as in Ref. [1] and use a similar approach to derive the crystallinity field

dynamics.
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Equations of Motion and Fokker-Planck Operator

We consider N interacting 3D active Brownian particles, where the position, ri, and orientation,

qi, of the i
th particle undergo the following equations of motion:

ṙi = U0qi +
1

ζ
FCi , (S1a)

q̇i = Ωi × qi, (S1b)

where ȧ ≡ ∂a/∂t, U0 is the active speed, ζ is the drag coefficient, FCi =
∑

j ̸=iFij is the sum of

conservative interparticle forces on particle i, and Ωi is a random angular velocity with zero mean

and variance ⟨Ωi(t)Ωj(t
′)⟩ = 2τ−1

R δijδ(t − t′)I where τR is the characteristic reorientation time,

δij is the Kronecker delta, δ(t) is the Dirac delta function, and I is the identity tensor. Here, this

mean and variance are taken over the noise statistics.

The noise-averaged N -body distribution function, PN , evolves according to ṖN = LPN where

the Fokker-Planck operator, L, is:

L ≡ −
∑
i

[
∂

∂ri
·
(
U0qi +

1

ζ
FCi

)
− τ−1

R ∇R
i ·∇R

i

]
, (S2)

where ∇R
i ≡ qi × ∂/∂qi is the rotational gradient operator. The adjoint to this Fokker-Planck

operator, L†, is:

L† ≡
∑
i

[(
U0qi +

1

ζ
FCi

)
· ∂

∂ri
+ τ−1

R ∇R
i ·∇R

i

]
. (S3)

This adjoint allows one to express the evolution of an observable O ≡
〈
Ô
〉
as Ȯ =

〈
L†Ô

〉
, where Ô

is the microscopic definition of the observable. Here, expectations are now taken over the N -body

distribution,
〈
Ô
〉
=
∫
γ dΓPN Ô where Γ = {rN ,qN} contains all N positions and N orientations

and γ is the phase space volume.

Steady-State Mechanics of the Density Field

We now consider the evolution of the density field, ρ(x, t) ≡ ⟨
∑

i δ(x− ri)⟩. This derivation

of the density field dynamics was previously performed in Ref. [1], using the same closures, ap-

proximations, and constitutive relations that we employ here. While a detailed discussion of this

derivation and the nature of the approximations and closures can be found in Ref. [1], we briefly

recapitulate the essence of the derivation here for convenience.
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Using L†, we find the dynamics of ρ to be:

ρ̇ =

〈
L†
∑
i

δ(x− ri)

〉
= −∇ ·

(
U0m+

1

ζ
∇ · σC

)
, (S4)

where we have defined the polar order field, m(x, t) ≡ ⟨
∑

i qiδ(x− ri)⟩, and the conservative

stress, σC ≡ 1
2

〈∑
i

∑
j ̸=i rijFijbij

〉
with the distance vector rij ≡ rj − ri and bond function

bij ≡
∫ 1
0 dλδ(x− rj + λrij).

The polar order field obeys its own evolution equation. Before examining the resulting equation,

we introduce an approximation in the dynamics of all fields whose microscopic definition includes

at least one orientation: the conservative interactions act to reduce the effective active speed from

its ideal value U0 to a field-dependent value. This dependence will ultimately require additional

constitutive equations (see Ref. [1]). Using this approximation, the evolution of the polar order

field is:

ṁ =

〈
L†
∑
i

qiδ(x− ri)

〉
= −∇ ·

(
U0U

m
Q̃
)
− 2

τR
m, (S5)

where we have introduced the nematic order field Q̃ ≡ ⟨
∑

i qiqiδ(x− ri)⟩ and the renormalized

active speed of the polar order field U0U
m
. The nematic order field undergoes its own evolution

equation:

˙̃Q =

〈
L†
∑
i

qiqiδ(x− ri)

〉
= −∇ ·

(
U0U

Q̃
B̃

)
− 6

τR

(
Q̃− ρ

3
I
)
, (S6)

where we have introduced the third orientational moment field, B̃ ≡ ⟨
∑

i qiqiqiδ(x− ri)⟩, and

the renormalized active speed of the nematic field U0U
Q
. Notably, the traceless nematic order

parameter, defined as Q ≡ Q̃− ρI/3, has the following dynamics:

Q̇ = −∇ ·
(
U0U

Q̃
B̃

)
− 1

3
Iρ̇− 6

τR
Q = −∇ ·

(
U0U

Q̃
B̃− 1

3
IU0m− 1

3ζ
∇ · σC

)
− 6

τR
Q. (S7)

While B̃ undergoes its own equation of motion, we define B̃ = B + α · m/5 (where α is an

isotropic fourth rank tensor with αijkl = δijδkl + δikδjl + δilδjk in Einstein notation) and use the

closure B = 0. This closure allows us to simply express the third orientational moment with the

polar order field. The evolution of the nematic order field is then:

Q̇ = −∇ ·
(
U0Im

(
3

5
U

Q̃ − 1

3

)
− 1

3ζ
∇ · σC

)
− 6

τR
Q. (S8)

Inserting the steady-state solution to Eq. (S5) into Eq. (S4) we have:

ρ̇ = −∇ ·
(
1

ζ
∇ · σact +

1

ζ
∇ · σC

)
, (S9)
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where we have defined the active stress σact ≡ −ζU0ℓ0U
m
Q̃/2 with the run length ℓ0 ≡ U0τR.

We now explicitly look for the quasi-1D dynamics in the z-direction. Defining P ≡ −σzzact + pC

where pC ≡ −σzzC and assuming the polar and nematic order fields relax faster than the density

field (quasi-static density field dynamics), we find:

ρ̇ =
∂

∂z

(
1

ζ

∂

∂z
P
)

= − ∂

∂z
(Lfρ) , (S10a)

and identify Jρ = Lfρ = −ζ∂P/∂z, mapping these dynamics to Ref. [2]. We see that L = ζ−1 and

therefore find the flux-driving force to be:

fρ = − ∂

∂z
P = − ∂

∂z

[
pC + pbulkact − ℓ20U

20

∂

∂z

(
U
∂pbulkC

∂z

)]
, (S10b)

where we have defined the active pressure pbulkact ≡ ζU0ℓ0Uρ/6 and, in line with our quasi-static

approximation, have substituted the steady-state solution to Eq. (S8), the steady-state solution

ζU0mz = −dσzz/dz, and the approximation U
m

= U
Q̃
= U into P and truncated at second order

in spatial gradients. Equation (S10b) immediately yields the “chemical pseudopotential” uρ = P

with Tρρ = −1 and Tρψ = 0, noting that ∂/∂z → d/dz in a steady-state.

Steady-State Mechanics of the Crystallinity Field

We now consider the evolution of a crystallinity field, ψV (x, t) ≡ ⟨
∑

i ψiδ(x− ri)⟩, where ψi

provides a measure of the local crystalline order around particle i that in principle can depend on

the distance vectors rij between i and all other particles j. This derivation has not been performed

previously to our knowledge, however we aim to parallel the derivation of the density field dynamics

when possible. Using L† we find:

ψ̇V =

〈
L†
∑
i

ψiδ(x− ri)

〉
= −∇ · Jψ + U0m

ψ + sC , (S11)

where we have defined mψ ≡
〈∑

i

∑
j qj ·

∂ψi
∂rj
δ(x− ri)

〉
, sC ≡ 1

ζ

〈∑
i

∑
j F

C
j · ∂ψi∂rj

δ(x− ri)
〉
, and

the crystallinity flux Jψ:

Jψ ≡

〈∑
i

(
U0qi +

1

ζ
FCi

)
δ (x− ri)

〉
. (S12)

While the flux is clearly not identically zero, we nevertheless approximate it as negligible in com-

parison to the generation terms, |∇ · Jψ| << |sψ|. This results in model A dynamics for the

crystallinity field and allows us to apply our recently proposed coexistence framework [2].
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As was the case in the previous section, mψ undergoes its own evolution equation:

ṁψ =

〈
L†
∑
i

∑
j

qj ·
∂ψi
∂rj

δ(x− ri)

〉
= −∇ ·

(
U0U

mψ

J Q̃ψ
1

)
+ U0U

mψ

s Q̃ψ2 − 2

τR
mψ, (S13)

where we have defined:

Q̃ψ
1 =

〈∑
i

∑
j

qiqj ·
∂ψi
∂rj

δ(x− ri)

〉
, (S14a)

Q̃ψ2 =

〈∑
i

∑
j

∑
k

qj ·
∂2ψi
∂rj∂rk

· qkδ(x− ri)

〉
, (S14b)

and the renormalized active speeds U0U
mψ

J and U0U
mψ

s .

We now seek expressions for the evolution of Q̃ψ
1 and Q̃ψ2 . Beginning with Q̃ψ2 :

˙̃Qψ2 =

〈
L†
∑
i

∑
j

∑
k

qj ·
∂2ψi
∂rj∂rk

· qkδ(x− ri)

〉

= −∇ ·
(
U0U

Q̃ψ2
J B̃2

)
+ U0U

Q̃ψ2
s B̃3 −

4

τR
Q̃ψ2 +

2

τR

〈∑
i

∑
j

∑
k

∂

∂rj
· ∂ψi
∂rk

δ(x− ri)

〉

− 1

τR

〈∑
i

∑
j

∑
k

(qjqj + qkqk) :
∂2ψi
∂rj∂rk

δ(x− ri)

〉
, (S15)

where we have defined:

B̃ψ
2 =

〈∑
i

∑
j

∑
k

qiqj ·
∂2ψi
∂rj∂rk

· qkδ(x− ri)

〉
, (S16a)

B̃ψ
3 =

〈∑
i

∑
j

∑
k

∑
l

qjqkql
...

∂3ψi
∂rj∂rk∂rl

δ(x− ri)

〉
, (S16b)

along with the renormalized active speeds U0U
Q̃ψ2
J and U0U

Q̃ψ2
s . We now recognize that as each ψi

is a function of the bond vectors rij , ∂ψi/∂ri = −
∑

j ̸=i ∂ψi/∂rij and ∂ψi/∂rj = ∂ψi/∂rij . This

implies:〈∑
i

∑
j

∑
k

∂

∂rj
· ∂ψi
∂rk

δ(x− ri)

〉
=

〈∑
i

∑
j

∂

∂rj
·

∂ψi
∂ri

+
∑
k ̸=i

∂ψi
∂rk

 δ(x− ri)

〉
= 0, (S17a)

and:〈∑
i

∑
j

∑
k

(qjqj + qkqk) :
∂2ψi
∂rj∂rk

δ(x− ri)

〉
=

〈∑
i

(∑
j

qjqj :
∂

∂rj

∂ψi
∂ri

+
∑
k ̸=i

∂ψi
∂rk


+
∑
k

qkqk :
∂

∂rk

∂ψi
∂ri

+
∑
j ̸=i

∂ψj
∂rk

)δ(x− ri)

〉
= 0, (S17b)
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and hence:

˙̃Qψ2 = −∇ ·
(
U0U

Q̃ψ2
J B̃2

)
+ U0U

Q̃ψ2
s B̃3 −

4

τR
Q̃ψ2 . (S18)

We examine the evolution of Q̃ψ
1 :

˙̃Qψ
1 =

〈
L†
∑
i

∑
j

qiqj ·
∂ψi
∂rj

δ(x− ri)

〉

= −∇ ·
(
U0U

Q̃ψ
1

J B̃1

)
+ U0U

Q̃ψ
1

s B̃2 −
4

τR
Q̃ψ

1 +
2

τR

〈∑
i

∑
j

∂ψi
∂rj

δ(x− ri)

〉

− 1

τR

〈∑
i

∑
j

(qjqj + qiqi) ·
∂ψi
∂rj

δ(x− ri)

〉
, (S19)

where we have defined:

B̃ψ
1 =

〈∑
i

∑
j

qiqiqj ·
∂ψi
∂rj

δ(x− ri)

〉
, (S20)

and the renormalized active speeds U0U
Q̃ψ1
J and U0U

Q̃ψ1
s . We again find:〈∑

i

∑
j

∂ψi
∂rj

δ(x− ri)

〉
=

〈∑
i

∂ψi
∂ri

+
∑
j ̸=i

∂ψi
∂rj

 δ(x− ri)

〉
= 0. (S21)

Contrasting this, we find:〈∑
i

∑
j

(qjqj + qiqi) ·
∂ψi
∂rj

δ(x− ri)

〉

=

〈∑
i

2qiqi · ∂ψi
∂ri

+
∑
j ̸=i

(qjqj + qiqi) ·
∂ψi
∂rj

 δ(x− ri)

〉

=

〈∑
i

∑
j ̸=i

(qjqj − qiqi) ·
∂ψi
∂rij

δ(x− ri)

〉
̸= 0, (S22)

which makes one unable to obtain closed expressions for the source of ψV at this order. To

circumvent this, we assume that this vector can be expressed as the product of an isotropic second

order tensor and
〈∑

i

∑
j
∂ψi
∂rj

δ(x− ri)
〉
which vanishes. We then have:

˙̃Qψ
1 = −∇ ·

(
U0U

Q̃ψ
1

J B̃1

)
+ U0U

Q̃ψ
1

s B̃2 −
4

τR
Q̃ψ

1 . (S23)

To close these equations, we introduce the following forms for B̃ψ
1 :

B̃ψ
1 = Bψ

i +
1

3
I

〈∑
i

∑
j

qj ·
∂ψi
∂rj

δ(x− ri)

〉
= Bψ

1 +
1

3
Imψ, (S24a)
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for B̃ψ
2 :

B̃ψ
2 = Bψ

2 +

〈∑
i

∑
j

∑
k

qj ·
∂2ψi
∂rj∂rk

δ(x− ri)

〉

= Bψ
2 +

〈∑
i

∑
j

qj ·
∂

∂rj

∂ψi
∂ri

+
∑
k ̸=i

∂ψi
∂rk

 δ(x− ri)

〉
= Bψ

2 , (S24b)

and for B̃ψ
3 :

B̃ψ
3 = Bψ

3 +

〈∑
i

∑
j

∑
k

∑
l

qj ·
∂

∂rj

∂

∂rk
· ∂ψi
∂rl

δ(x− ri)

〉

= Bψ
3 +

〈∑
i

∑
j

∑
k

qj ·
∂

∂rj

∂

∂rk
·

∂ψi
∂ri

+
∑
l ̸=i

∂ψi
∂rl

 δ(x− ri)

〉
= Bψ

3 . (S24c)

We then introduce the closures Bψ
1 = 0, Bψ

2 = 0, and Bψ
3 = 0 and substitute the result into

Eqs. (S18) and (S23), finding:

˙̃Qψ2 = − 4

τR
Q̃ψ2 , (S25a)

˙̃Qψ
1 = −∇

(
U0U

Q̃ψ
1

J

1

3
mψ

)
− 4

τR
Q̃ψ

1 . (S25b)

We now return to Eq. (S11). Solving Eq. (S13) and substituting the result into Eq. (S11) we

have:

ψ̇V = −∇ ·

(
U0ℓ0U

mψ

J

2
Q̃ψ

1

)
+
U0ℓ0U

mψ

s

2
Q̃ψ2 + sC (S26)

Substituting the solutions to Eq. (S25) we find:

ψ̇V = ∇ ·

(
ℓ20U

mψ

J

24
∇
(
U

Q̃ψ
1

J U0m
ψ

))
+ sC . (S27)

We now use the steady-state solution U0m
ψ = −sC to find:

ψ̇V = sC −∇ ·

(
ℓ20U

mψ

J

24
∇
(
U

Q̃ψ
1

J sC

))
. (S28)

Moving to a quasi-1D profile oriented along the z-direction, the dynamics of the crystallinity

field are:

ψ̇V =Mfψ = sC − ℓ20
24

∂

∂z

(
U
∂

∂z

(
UsbulkC

))
, (S29)
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where we have truncated at second order in spatial gradients by retaining only the bulk part of

the conservative generation (sC ≡ sbulkC + s
(2)
C ) and assumed U

mψ

J = U
Q̃ψ

1
J = U . Mapping these

dynamics to Ref. [2], we may set M = 1 and identify the generation-driving force as:

fψ = sC − ℓ20
24

∂

∂z

(
U
∂

∂z

(
UsbulkC

))
, (S30)

where ∂/∂z → d/dz in a steady-state.

DERIVATION OF COEXISTENCE CRITERIA

With the expressions for fρ and fψ determined in the previous section, we now derive the

nonequilibrium coexistence criteria used in the main text following Ref. [2]. We note that as fρ is

the spatial derivative of −P, we can immediately identify that the steady-state condition of the

conserved field (in flux-free boundary conditions), fρ = 0, can be expressed as P = const, i.e., the

dynamic pressure must be spatially uniform. In the language of Ref. [2], P is the pseudopotential

of the conserved field, uρ = P. As spatial gradients vanish in the bulk coexisting phases, the

steady-state conditions P = const and fψ = 0 can be immediately converted to three coexistence

criteria:

Pbulk
(
ρf , ψfV

)
=Pbulk (ρs, ψsV ) = Pcoexist, (S31a)

sbulkC

(
ρf , ψfV

)
=0, (S31b)

sbulkC (ρs, ψsV ) =0, (S31c)

where Pbulk ≡ pbulkC + pbulkact and Pcoexist is a constant that must be determined. We therefore seek

one additional equation to determine the four variables of interest: ρf , ρs, ψfV , and ψ
s
V .

In equilibrium, the final criterion is the Maxwell construction. Noting that it is the dynamic

pressure that must be spatially uniform (and not just the conservative contribution), the equilib-

rium Maxwell construction for active solid-fluid coexistence is:∫ ρs

ρf

(
Pbulk(ρ, ψ∗

V )− Pcoexist
)
dρ−1 = 0, (S32)

where ψ∗
V (ρ) is defined to satisfy sbulkC (ρ, ψ∗

V ) = 0. Combining this Maxwell construction with

Eq. (S31) is what we refer to as the “passive” criteria in the main text – this is what was used in

a previous attempt to quantitatively predict active solid-fluid binodals (Ref. [3]). However, as we

will show, this integral is generally nonzero and path-dependent as it requires the Gibbs-Duhem

relation, dG = ρ−1dP + ψNdfψ (G is the chemical potential in equilibrium), to hold.
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Following Ref. [2], we introduce an ansatz of a generalized Gibbs-Duhem relation:

dG
dz

= Eρ
dP
dz

− Eψ
dfψ
dz

, (S33)

where Eρ and Eψ are “Maxwell construction variables” which depend on ρ and ψV but not their

spatial gradients while G is a “global quantity” that depends on both ρ and ψV and their spatial

gradients. In particular, we expand G as:

G = Gbulk − G(2,2)
ρ

d2ρ

dz2
− G(2,2)

ψ

d2ψV
dz2

− G(2,1)
ρρ

(
dρ

dz

)2

− 2G(2,1)
ρψ

dρ

dz

dψV
dz

− G(2,1)
ψψ

(
dψV
dz

)2

, (S34)

where Gbulk and each G(2,2)
i and G(2,1)

ij for i, j ∈ {ρ, ψ} are equations of state that depend on ρ and

ψV but not their spatial gradients. When Eρ, Eψ, and the coefficients of G can be determined, G is

spatially uniform in steady-states and Gbulk is equal in coexisting phases. This final criterion can

be expressed as a generalized Maxwell construction:∫ Esρ

Efρ

(
Pbulk(ρ, ψ∗

V )− Pcoexist
)
dEρ = 0. (S35)

We now expand the conservative pressure:

pC = pbulkC − p
(2,2)
Cρ

d2ρ

dz2
− p

(2,2)
Cψ

d2ψV
dz2

− p
(2,1)
Cρρ

(
dρ

dz

)2

− 2p
(2,1)
Cρψ

dρ

dz

dψV
dz

− p
(2,1)
Cψψ

(
dψV
dz

)2

, (S36a)

and generation:

sC = sbulkC − s
(2,2)
Cρ

d2ρ

dz2
− s

(2,2)
Cψ

d2ψV
dz2

− s
(2,1)
Cρρ

(
dρ

dz

)2

− 2s
(2,1)
Cρψ

dρ

dz

dψV
dz

− s
(2,1)
Cψψ

(
dψV
dz

)2

, (S36b)

where pbulkC , sbulkC , and each p
(2,2)
Ci , s

(2,2)
Ci , p

(2,1)
Cij , and s

(2,1)
Cij for i, j ∈ {ρ, ψ} are equations of state

that depend on ρ and ψV but not their spatial gradients. We now define:

P(2,2)
ρ =p

(2,2)
Cρ +

ℓ20U
2

20

∂pbulkC

∂ρ
, (S37a)

P(2,2)
ψ =p

(2,2)
Cψ +

ℓ20U
2

20

∂pbulkC

∂ψV
, (S37b)

P(2,1)
ρρ =p

(2,1)
Cρρ +

ℓ20U

20

(
∂pbulkC

∂ρ

∂U

∂ρ
+ U

∂2pbulkC

∂ρ2

)
, (S37c)

P(2,1)
ρψ =p

(2,1)
Cρψ +

ℓ20U

20

(
∂pbulkC

∂ψV

∂U

∂ρ
+
∂pbulkC

∂ρ

∂U

∂ψV
+ 2U

∂2pbulkC

∂ρ∂ψV

)
, (S37d)

P(2,1)
ψψ =p

(2,1)
Cψψ +

ℓ20U

20

(
∂pbulkC

∂ψV

∂U

∂ψV
+ U

∂2pbulkC

∂ψ2
V

)
, (S37e)

and:

s(2,2)ρ = s
(2,2)
Cρ +

ℓ20U

24

(
U
∂sbulkC

∂ρ
+ sbulkC

∂U

∂ρ

)
, (S37f)
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s
(2,2)
ψ = s

(2,2)
Cψ +

ℓ20U

24

(
U
∂sbulkC

∂ψV
+ sbulkC

∂U

∂ψV

)
, (S37g)

s(2,1)ρρ = s
(2,1)
Cρρ +

ℓ20
24

[
U

(
U
∂2sbulkC

∂ρ2
+ 2

∂U

∂ρ

∂sbulkC

∂ρ
+ sbulkC

∂2U

∂ρ2

)
+
∂U

∂ρ

(
U
∂sbulkC

∂ρ
+ sbulkC

∂U

∂ρ

)]
,

(S37h)

s
(2,1)
ρψ = s

(2,1)
Cρψ+

ℓ20
24

[
2U

(
U
∂2sbulkC

∂ρ∂ψV
+
∂U

∂ρ

∂sbulkC

∂ψV
+

∂U

∂ψV

∂sbulkC

∂ρ
+ sbulkC

∂2U

∂ρψV

)
(S37i)

+
∂U

∂ψV

(
U
∂sbulkC

∂ρ
+ sbulkC

∂U

∂ρ

)
+
∂U

∂ρ

(
U
∂sbulkC

∂ψV
+ sbulkC

∂U

∂ψV

)]
, (S37j)

s
(2,1)
ψψ = s

(2,1)
Cψψ+

ℓ20
24

[
U

(
U
∂2sbulkC

∂ψ2
V

+ 2
∂U

∂ψV

∂sbulkC

∂ψV
+ sbulkC

∂2U

∂ψ2
V

)
+

∂U

∂ψV

(
U
∂sbulkC

∂ψV
+ sbulkC

∂U

∂ψV

)]
,

(S37k)

such that:

P =Pbulk − P(2,2)
ρ

d2ρ

dz2
− P(2,2)

ψ

d2ψV
dz2

− P(2,1)
ρρ

(
dρ

dz

)2

− 2P(2,1)
ρψ

dρ

dz

dψV
dz

− P(2,1)
ψψ

(
dψV
dz

)2

, (S38a)

fψ =sbulkC − s(2,2)ρ

d2ρ

dz2
− s

(2,2)
ψ

d2ψV
dz2

− s(2,1)ρρ

(
dρ

dz

)2

− 2s
(2,1)
ρψ

dρ

dz

dψV
dz

− s
(2,1)
ψψ

(
dψV
dz

)2

. (S38b)

Substituting the expressions for P and fψ into the generalized Gibbs-Duhem relation [Eq. (S33)]

and evaluating derivatives, we find:

∂Gbulk

∂ρ

dρ

dz
+
∂Gbulk

∂ψV

dψV
dz

− G(2,2)
ρ

d3ρ

dz3
− G(2,2)

ψ

d3ψV
dz3

−

(
∂G(2,2)

ρ

∂ρ
+ 2G(2,1)

ρρ

)
d2ρ

dz2
dρ

dz

−

(
∂G(2,2)

ρ

∂ψV
+ G(2,1)

ρψ

)
d2ρ

dz2
dψ

dz
−

∂G(2,2)
ψ

∂ρ
+ G(2,1)

ρψ

 d2ψV
dz2

dρ

dz
−

∂G(2,2)
ψ

∂ψV
+ 2G(2,1)

ψψ

 d2ψV
dz2

dψV
dz

− ∂G(2,1)
ρρ

∂ρ

(
dρ

dz

)3

−
∂G(2,1)

ψψ

∂ψV

(
dψV
dz

)3

−

∂G(2,1)
ρρ

∂ψV
+
∂G(2,1)

ρψ

∂ρ

(dρ
dz

)2 dψV
dz

−

∂G(2,1)
ψψ

∂ρ
+
∂G(2,1)

ρψ

∂ψV

(dψV
dz

)2 dρ

dz
= Eρ

[
∂Pbulk

∂ρ

dρ

dz
+
∂Pbulk

∂ψV

dψV
dz

− P(2,2)
ρ

d3ρ

dz3
− P(2,2)

ψ

d3ψV
dz3

−

(
∂P(2,2)

ρ

∂ρ
+ 2P(2,1)

ρρ

)
d2ρ

dz2
dρ

dz
−

(
∂P(2,2)

ρ

∂ψV
+ P(2,1)

ρψ

)
d2ρ

dz2
dψV
dz

−

∂P(2,2)
ψ

∂ρ
+ P(2,1)

ρψ

 d2ψV
dz2

dρ

dz

−

∂P(2,2)
ψ

∂ψV
+ 2P(2,1)

ψψ

 d2ψV
dz2

dψV
dz

− ∂P(2,1)
ρρ

∂ρ

(
dρ

dz

)3

−
∂P(2,1)

ψψ

∂ψV

(
dψV
dz

)3

−

∂P(2,1)
ρρ

∂ψV
+
∂P(2,1)

ρψ

∂ρ

(dρ
dz

)2 dψV
dz

−

∂P(2,1)
ψψ

∂ρ
+
∂P(2,1)

ρψ

∂ψV

(dψV
dz

)2 dρ

dz

]
−Eψ

[
∂sbulkC

∂ρ

dρ

dz
+
∂sbulkC

∂ψV

dψV
dz

− s(2,2)ρ

d3ρ

dz3
− s

(2,2)
ψ

d3ψV
dz3

−

(
∂s

(2,2)
ρ

∂ρ
+ 2s(2,1)ρρ

)
d2ρ

dz2
dρ

dz
−

(
∂s

(2,2)
ρ

∂ψV
+ s

(2,1)
ρψ

)
d2ρ

dz2
dψV
dz



11

−

∂s(2,2)ψ

∂ρ
+ s

(2,1)
ρψ

 d2ψV
dz2

dρ

dz
−

∂s(2,2)ψ

∂ψV
+ 2s

(2,1)
ψψ

 d2ψV
dz2

dψV
dz

− ∂s
(2,1)
ρρ

∂ρ

(
dρ

dz

)3

−
∂s

(2,1)
ψψ

∂ψV

(
dψV
dz

)3

−

∂s(2,1)ρρ

∂ψV
+
∂s

(2,1)
ρψ

∂ρ

(dρ
dz

)2 dψV
dz

−

∂s(2,1)ψψ

∂ρ
+
∂s

(2,1)
ρψ

∂ψV

(dψV
dz

)2 dρ

dz

]
. (S39)

Matching the coefficients of each term of order (dnρ/dzn)k(dmψV /dz
m)l (where nk +ml = 1 or 3),

we find a system of partial differential-algebraic equations for Eρ, Eψ, and each of the coefficients

in G:

∂Gbulk

∂ρ
=Eρ

∂Pbulk

∂ρ
− Eψ

∂sbulkC

∂ρ
, (S40a)

∂Gbulk

∂ψV
=Eρ

∂Pbulk

∂ψV
− Eψ

∂sbulkC

∂ψV
, (S40b)

G(2,2)
ρ =EρP(2,2)

ρ − Eψs(2,2)ρ , (S40c)

G(2,2)
ψ =EρP(2,2)

ψ − Eψs
(2,2)
ψ , (S40d)

∂G(2,2)
ρ

∂ρ
+ 2G(2,1)

ρρ =Eρ

(
∂P(2,2)

ρ

∂ρ
+ 2P(2,1)

ρρ

)
− Eψ

(
∂s

(2,2)
ρ

∂ρ
+ 2s(2,1)ρρ

)
, (S40e)

∂G(2,2)
ρ

∂ψV
+ G(2,1)

ρψ =Eρ

(
∂P(2,2)

ρ

∂ψV
+ P(2,1)

ρψ

)
− Eψ

(
∂s

(2,2)
ρ

∂ψV
+ s

(2,1)
ρψ

)
, (S40f)

∂G(2,2)
ψ

∂ρ
+ G(2,1)

ρψ =Eρ

∂P(2,2)
ψ

∂ρ
+ P(2,1)

ρψ

− Eψ

∂s(2,2)ψ

∂ρ
+ s

(2,1)
ρψ

 , (S40g)

∂G(2,2)
ψ

∂ψV
+ 2G(2,1)

ψψ =Eρ

∂P(2,2)
ψ

∂ψV
+ 2P(2,1)

ψψ

− Eψ

∂s(2,2)ψ

∂ψV
+ 2s

(2,1)
ψψ

 , (S40h)

∂G(2,1)
ρρ

∂ρ
=Eρ

∂P(2,1)
ρρ

∂ρ
− Eψ

∂s
(2,1)
ρρ

∂ρ
, (S40i)

∂G(2,1)
ψψ

∂ψV
=Eρ

∂P(2,1)
ψψ

∂ρ
− Eψ

∂s
(2,1)
ψψ

∂ψV
, (S40j)

∂G(2,1)
ρρ

∂ψV
+
∂G(2,1)

ρψ

∂ρ
=Eρ

∂P(2,1)
ρρ

∂ψV
+
∂P(2,1)

ρψ

∂ρ

− Eψ

∂s(2,1)ρρ

∂ψV
+
∂s

(2,1)
ρψ

∂ρ

 , (S40k)

∂G(2,1)
ψψ

∂ρ
+
∂G(2,1)

ρψ

∂ψV
=Eρ

∂P(2,1)
ψψ

∂ρ
+
∂P(2,1)

ρψ

∂ψV

− Eψ

∂s(2,1)ψψ

∂ρ
+
∂s

(2,1)
ρψ

∂ψV

 . (S40l)

At finite activity, these equations do not have a solution. In the limit ℓ0 → 0, the system is

effectively passive and we find Eρ = 1/ρ and Eψ = −ψN , recovering the equilibrium Gibbs-Duhem

relation and Maxwell construction. In the high-activity limit, ℓ0 → ∞, all p
(2,2)
Ci , s

(2,2)
Ci , p

(2,1)
Cij ,

and s
(2,1)
Cij for {ρ, ψ} can be ignored as the active contributions at this order scale as ℓ20. In this
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limit, Eq. (S40) cannot be solved, however Eq. (S40c)-(S40l) can be, where one finds Eρ = pbulkC and

Eψ = 0. As shown in Ref. [2], when this is the case, the final coexistence criterion is an approximate

generalized Maxwell construction:∫ pbulkC (ρs,ψsV )

pbulkC (ρf ,ψfV )

(
Pbulk(ρ, ψV )− Pcoexist

)
dpbulkC ≈ 0, (S41)

which is path-dependent and generally only vanishes when evaluated along the integration path

that corresponds to the spatial coexistence profiles (which is what we would like to circumvent).

Evaluating Eq. (S41) along ψ∗
V thus represents and approximate form of the final criterion –

combining this with Eq. (S31) is what we refer to as the “active” criteria in the main text, noting

that it is only well-defined (albeit still approximate) in the infinite activity limit.

EQUATIONS OF STATE OF ACTIVE BROWNIAN SPHERES

Ultimately, the application of the coexistence criteria derived in the main text will require

equations of state for pbulkC , U , and ψ∗
V . Simulation data can only be obtained for systems in which

a state of homogeneous ρ is at least locally stable. Consequently, it is not possible to obtain the

complete relevant functional dependence of the required state functions directly from simulation.

However, application of our coexistence criteria only requires knowledge of the equations of state

at ψV = ψ∗
V (ρ) for each density ρ. We therefore proceed by devising a simple simulation protocol

to obtain as much of this limited data as possible. We then use this data, along with the known

physical limits we require our equations of state to capture, in order to develop physical and

semi-empirical bulk equations of state.

We now seek the minimal functional forms of these equations of state that capture the phys-

ical limits we impose (e.g., established equations of state for the fluid states and passive crystal,

diverging active crystal pressure at close-packing, zero crystallinity at zero density and maximal

crystallinity at close-packing) while capturing trends in our data. The chosen forms will necessarily

not be unique, however we opt for simple forms that minimize the number of tuning parameters. We

then determine the values of the parameters in the equations through straightforward regressions

in Python.

Physical and Semi-Empirical Bulk Equations of State

To construct the ABP solid-fluid phase diagram by applying our derived coexistence cri-

teria, we need equations of state for the preferred crystallinity, ψ∗
N (ϕ; ℓ0/D), and pressures,



13

FIG. S1. Conservative interaction (pbulkC ), active (pbulkact ), and total (Pbulk) pressure equations of state at low

activity. Pressures are nondimensionalized by the scale 6ζU0/πD
2.

pbulkC (ϕ, ψN ; ℓ0/D) and pbulkact (ϕ, ψN ; ℓ0/D), that accurately describe both fluid (ψN ≈ 0) and solid

(ψN > 0) phases at all activities. We combine existing equations of state for an ABP fluid [1]

(developed for moderate activities ℓ0/D > 1) and an equilibrium hard sphere fluid [4] to develop

accurate equations of state for ABP fluids at all activities. To extend these equations of state to

describe crystalline systems, we develop auxiliary equations of state [e.g., an equation of state for

the maximum possible packing fraction, ϕmax(ψN ; ℓ0/D)] to capture the effects of nonzero ψN .

The active pressure of ABP fluids developed in Ref. [1] (pbulkact ) correctly recovers the ideal

gas pressure in the reversible limit (ℓ0/D → 0), i.e., pbulkact = ρkBTact where the active energy

scale is kBTact ≡ ζU0ℓ0/6. We extend pbulkact to nonzero ψN by introducing an equation of state

ϕmax (ψN ; ℓ0/D) capturing the crystallinity-dependent maximum volume fraction:

pbulkact (ϕ, ψN ; ℓ0/D) =
ζU0

πD2

(
ℓ0
D

)
ϕ
1 + tanh(AactψN )

[
1− c

(1)
actt100

(
ℓ0
D ,

ℓc0
D

)
+ c

(2)
actt1

(
ℓ0
D ,

ℓact0
D

)]
1 +

(
1− exp

[
−27/6

(
ℓ0
D

)])
ϕ

1−ϕ/ϕmax(ψN ;ℓ0/D)

,

(S42a)

tB (ℓ0/D, ℓ
∗
0/D) =

1 + tanh
(
B
ℓ0−ℓ∗0
D

)
2

(S42b)

where ℓc0 = 18.8 × 2−1/6D is the MIPS critical point [5], ϕmax (ψN = 0; ℓ0/D) = ϕRCP = 0.645 to

recover the fluid pressure in Ref. [1], and ϕmax (ψN = 1; ℓ0/D) = ϕCP = 0.74 when the system has

perfect crystalline order. We emphasize that Eq. (S42a) recovers the active pressure in Ref. [1]

when ψN = 0. We fit the coefficients Aact = 10, c
(1)
act = 29, c

(2)
act = 30, and ℓact0 = 3 × 2−1/6D.

The conservative interaction pressure in Ref. [1] (pbulk,ABP
C ) does not recover the equilibrium hard

sphere pressure (pbulk,HS
C ) [4] in the low activity limit. We remedy this by including an interpolation

[through an equation of state x (ℓ0/D)] between the conservative interaction pressures of an ABP

fluid and an equilibrium hard sphere fluid (for which we use a simplified version of that in Ref. [4]

that we verify on Brownian dynamics simulations of passive hard spheres). Extending pbulk,ABP
C to
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nonzero ψN requires an equation of state capturing an empirical crystallinity-induced slowing of

its divergence [β (ψ; ℓ0/D)] in addition to using ϕmax (ψN ; ℓ0/D) as the maximum volume fraction:

pbulkC = x
(
ℓ0/D

)
pbulk,ABP
C + [1− x (ℓ0/D)] pbulk,HS

C , (S43a)

pbulk,ABP
C (ϕ, ψN ; ℓ0/D) = 2−7/6 ϕ2

(1− ϕ/ϕmax)β

(
1− c

(1)
C tanh(ACψN )

[
1− c

(2)
C t100

(
ℓ0
D
,
ℓc0
D

)])
(S43b)

pbulk,HS
C (ϕ, ψN ; kBT ) =

6kBT

πD3

ϕ

1− ϕ/ϕmax
, (S43c)

where β (ψN = 0; ℓ0/D) = 1/2 to recover the pressure in Ref. [1] and AC = 10, c
(1)
C = 5/6, and

c
(2)
C = 0.9 are coefficients we have fit. We again emphasize that Eq. (S43a) recovers the conservative

pressure in Ref. [1] when ψN = 0 and ℓ0/D ≫ 1 and recovers the pressure of a hard sphere fluid

(see Ref. [4]) when ψN = 0 and ℓ0/D = 0. We have introduced the thermal energy kBT , which,

in systems of active hard spheres, is generally density (and crystallinity) dependent and can be

defined as kBT ≡ pbulkact /ρ. We find no appreciable differences in the resulting phase diagram when

approximating this active temperature with that of ideal ABPs in 3D, kBT = kBTact = ζU0ℓ0/6 [6],

however. We then use the simpler density-independent effective temperature, kBTact, when con-

structing phase diagrams but note that the density dependence of the effective temperature may

be more important for other systems.

The equations of state x (ℓ0/D), ϕmax (ψN ; ℓ0/D), and β (ψN ; ℓ0/D) were empirically fit:

x
(
ℓ0/D

)
= (1− tanh(AxψN ))

[
tanh

(
log

(
ℓ0
D

+ 1

)
+ t10

(
ℓ0
D
,
ℓc0
D

)[
eℓ0/D − 1

])]

+ tanh(10ψN )

tanh
log

(
ℓ0
D

+ 1

)
+ t100

(
ℓ0
D
,
ℓc0
D

)r(1)x [
e(ℓ0/ℓ

c
0)
r
(2)
x − 1

] , (S44a)

ϕmax (ψN ; ℓ0/D) = ϕRCP +
(
ϕCP − ϕRCP

)
tanh (AmaxψN ) , (S44b)

β (ψN ; ℓ0/D) =
1

2
− tanh(AβψN )

[
c
(1)
β t5 (ℓ0/D, ℓ

c
0/D) + c

(2)
β t0.01

(
ℓ0/D, ℓ

β
0/D

)]
, (S44c)

where Ax = 10, r
(1)
x = r

(2)
x = 10, Amax = 15.848, Aβ = 10, c

(1)
β = 0.4, c

(2)
β = 0.175, and

ℓβ0 = 50 × 2−1/6D are coefficients we have fit. The forms of these fits were motivated by the

previously discussed physical limits that we require to be met (e.g., ϕmax must be 0.74 when

ψN = 1 and ≈ 0.645 when ψN = 0).

In order to use the equations of state in Eqs. (S42a) and (S43) we require an equation of state

for the preferred per-particle crystallinity, ψ∗
N , which we fit an expression for ψ∗

N (ϕ; ℓ0/D) (see
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Fig. 1 in the main text):

ψ∗
N (ϕ; ℓ0/D) = Θ

(
ϕ− ϕODT

)
tanh

[
exp

(
mψϕ+ cψ +Aψ

ϕ√
1− ϕ/ϕCP

)

×

∆
(1)
ψ +

(ℓ0/D)r
(1)
ψ

∆
(2)
ψ + ln

[
∆

(3)
ψ + (ℓ0/D)r

(2)
ψ

]


−r(3)ψ (1−ϕ/ϕCP) ]
, (S45)

where mψ = 18.8, cψ = −13.1, Aψ = 0.05, ∆
(1)
ψ = 0.01, ∆

(2)
ψ = ∆

(3)
ψ = 1, r

(1)
ψ = 1.16 and

r
(2)
ψ = r

(3)
ψ = 2, are again constants that have been fit. The equation of state for the order-disorder

volume fraction, ϕODT (ℓ0/D), [see the inset of Fig. 1 in the main text] was determined to be:

ϕODT (ℓ0/D) = ϕODT
eqm +

(
ϕRCP − ϕODT

eqm

)
tanh

(
AODT log

[
cODT

ℓ0
D

+ 1

])
, (S46)

where ϕODT
eqm = 0.515 is the equilibrium hard sphere ϕODT (determined by imposing that the equi-

librium Maxwell construction on pbulk,HS
C returns the hard sphere crystal-fluid binodals measured

in simulations [7]) and AODT = 1.381 and cODT = 0.909 are fitted constants.

We see that since our equation for ψ∗
N in Eq. (S45) experiences a discontinuity at ϕODT, our

equation for pbulkC in Eq. (S43) does as well. This discontinuity is necessary for passive solid-fluid

coexistence, as the pressure (evaluated at ψ∗
N ) must be non-monotonic with increasing ρ in order

to find binodals.

Figure S1 shows the fits for pbulkC and pbulkact at low activities after inserting the expressions

for x, ϕmax, β, ϕODT, and ψ∗ into Eqs. (S42a) and (S43). While the fit for pbulkC is an overesti-

mate, the qualitative ℓ0/D and ϕ dependent trends are captured, whereas the fit for pbulkact is more

quantitatively accurate.

Characterization of the “Pseudo”-spinodal

There are two spinodals, or regions of instability, in our dynamic pressure
(
Pbulk = pbulkC + pbulkact

)
of active hard spheres in Eqs. (S43) and (S42a). The first is a true spinodal indicating that the

fluid phase (ψN ≈ 0) is unstable at certain densities. The fluid spinodal, which occurs above the

critical activity, arises from a non-monotonic active pressure and results in MIPS. The second is

a “pseudo”-spinodal which drives crystallization, even in the reversible limit. We distinguish this

spinodal as it indicates that states of intermediate density and finite ψN (which cannot generally

be prepared) are unstable.
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FIG. S2. ABP pressure (nondimensionalized by the scale 6ζU0/πD
2) at (a) low activity ℓ0/D = 0.9, (b)

intermediate activity ℓ0/D = 17.4, and (c) high activity ℓ0/D = 22.3. pbulkC is shown in dashed lines while

pbulkact is shown in dotted lines.

For a solid-fluid transition to occur for passive hard spheres, pbulkC must contain a discontinuity

at the order-disorder volume fraction, ϕODT. This discontinuity represents a region of instability

that occurs over an infinitely narrow range of ϕ where ψ∗
N adopts a nonzero value, representing

a pseudo-spinodal. The pseudo-spinodal widens at finite activity due to the non-monotonicity of

pbulkact , encompassing a finite range of volume fractions above ϕODT. Figure S2 shows the widening

of this pseudo-spinodal, showing the active and conservative interaction contributions to Pbulk at

low, intermediate, and high activity (the same activities as Fig. 2 in the main text).
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