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Model Development

Surface representation

The surface is parameterized by a position vector r(θα, t), where θα are the surface coordinates, α ∈ {1, 2}. Here
we considered two different parameterizations, orthogonal Monge and axisymmetric polar coordinates. In the Monge
parametrization the membrane is modeled from its projected plane and θα are (x, y), position is given by

r(x, y, t) = xi+ yj + z(x, y, t)k, (S1)

Where unit vectors (i, j,k) form a fixed Cartesian orthonormal basis, and z(x, y, t) is the deflection from the (x, y)
plane. In axisymmetric coordinates, we parameterize the membrane by the arclength s and the rotation angle θ (Figure
4a) as

r(r, z, θ) = r(s, θ). (S2)
The surface tangents are given by eα = r,α and the surface metric aαβ = eα · eβ and the curvature tensor bαβ =
eα,β ·n are the two fundamental tensors we use in the derivation that follows. We refer the reader to [1, 2] for details of
these derivations. The scalar invariants, mean curvature H , and Gaussian curvature K denote the average and product
of the two principal curvatures and are given by

H =
1

2
aαβbαβ , K =

1

2
εαβεµδbαµbβδ, (S3)

where, aαβ = (aαβ)
−1, and εαβ is the permutation tensor: ε12 = −ε21 = 1/

√
a, ε11 = ε22 = 0, with a = det |aαβ |.

Here α, β, δ, µ are the surface coordinates, and moving forward we use Greek letters to indicate surface coordinates.

Force balance

The force balance equation of the membrane is dictated by

T α
;α + pn+ f = 0 , (S4)

where p is normal pressure on the membrane, f applied force density on the membrane, and ()α;α is the surface
divergence, and T is the traction on the membrane and given by,

T α = Nβαaβ + Sαn. (S5)

N is the in-plane component of the stress and is given by

Nβα = πβα + ζβα + bβµM
µα and Sα = −Mαβ

;β , (S6)
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where παβ = ν[vα;β + vβ;α − 2wbαβ ], is the viscous stress with v, w as tangential and normal velocity, ζβα and Mβα

are obtained from the following constitutive relations [3]

ζβα = ρ

(
∂F

∂aαβ
+

∂F

∂aβα

)
and Mβα =

ρ

2

(
∂F

∂bαβ
+

∂F

∂bβα

)
, (S7)

with F = W/ρ as the energy mass density of the membrane. Combining these we get the balance equations in
equation S4 in normal direction

p+ f · n = −(Sα
;α +Nβαbβα) = ∆

(
1

2
WH

)
+ (WK);αβ b̃

αβ

+WH

(
2H2 −K

)
+ 2H (KWK −W )− 2λH

− 2ν
[
bβαdβα − w(4H2 − 2K)

]
,

(S8)

with b̃αβ = 2aaαβ − bαβ and in the tangential direction as

−f · τ = Nβα
;α − Sαbβα = aβα

(
∂W

∂θα|exp
+ λ,α

)
+ 2ν(dβα;α − bβαw,α)− 4νwaβαH,α,

(S9)

where ∂θα|exp denotes the explicit coordinate dependence of the free energy.

Free energy and governing equation

The free energy of the membrane is given by

W = kBT [PS]sat [η log η + (1− η) log (1− η)]︸ ︷︷ ︸
entropic interaction

− f · z︸︷︷︸
work done by the forces

+
γ[PS]sat

2
η(1− η) +

γ

4
|∇η|2︸ ︷︷ ︸

aggregation

+κ(H − ℓ[PS]satη)
2 + κ̄K︸ ︷︷ ︸

bending

.

(S10)

Here, η is the area fraction of PS on the outer leaflet, [PS]sat is the saturation density of PS on the outer leaflet,
and we assume that the spontaneous curvature is directly proportional to the density of PS on the outer leaflet. Note
that f is the external force density on the membrane, which includes linkers’ force and the point force as f =
f lin + fpullzδ(r − r0), where δ is Drac delta function, and r0 is location of applied point force.

The full kinetic equation of η on the outer leaflet is given by the following equation

ηt +∇ · (vη)︸ ︷︷ ︸
advection

= kscramblase e
αH(s)η2(1− η)︸ ︷︷ ︸

scramblase activity

− kP4ATPaseηe
βH(s)︸ ︷︷ ︸

P4ATPase activity

− η

FD

[
γ

2[PS]sat
∆2η

]
︸ ︷︷ ︸

aggregation

+
∆η

FD

[
kBT

1− η
+ 2κℓ2[PS]satη − γη

]
︸ ︷︷ ︸

diffusion

+
2κℓ

FD
[η∆H −∇η · ∇H]︸ ︷︷ ︸
nonlinear interaction 1

+
∇η
FD

·
[
∇η
(

kBT

(1− η)2
+ 2κℓ2[PS]sat − γ

)
− γ∇(∆η)

2[PS]sat

]
︸ ︷︷ ︸

nonlinear interaction 2

.

(S11)

Here, FD is the hydrodynamic drag on PS, η is the area fraction of PS, the first and second terms in RHS denote the
kinetics of scramblase and ATPases, the second and third term denotes diffusion and aggregation, and the rest of the
terms indicate non-linear interactions between bending, diffusion, and aggregation.
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The governing equation for the membrane shape is given by

κ∆(H − ℓηsatη)︸ ︷︷ ︸
bending: Laplacian term

− 2Hκ(H − ℓηsatη)
2︸ ︷︷ ︸

bending: nonlinear

+2κ(H − ℓηsatη)(2H
2 −K)︸ ︷︷ ︸

bending: curvature coupling

− 2H

[
kBTηsat

{
η log η + (1− η) log(1− η)

}︸ ︷︷ ︸
entropic

]
+ ϕklinzH(z − d0)

+ 2H

[
γηsat
2 η(1− η) + γ

4 |∇η|2︸ ︷︷ ︸
aggregation: gradient

]
− 2ν

[
b : d

]︸ ︷︷ ︸
viscous: strain

+ 2νw(4H2 − 2K)︸ ︷︷ ︸
viscous: curvature

= p+ 2λH︸ ︷︷ ︸
capillary

+ f · n︸ ︷︷ ︸
Linker’s force

.

(S12)

where, H is the Heaviside function, and d0 is the cut off length of linkers. The tension evolution in plane is given by

∇λ+ 2ν(∇ · d−∇w · b)− 4νw∇H︸ ︷︷ ︸
viscous

+ f · τ︸︷︷︸
Linker’s force

=

− [PS]sat∇η
[
kBT log

η

1− η︸ ︷︷ ︸
entropic

− 2κℓ(H − ℓ[PS]satη)︸ ︷︷ ︸
bending

]

+ [PS]sat∇η
[(

γ

2
(2η − 1) +

γ

2[PS]sat
∆η

)
︸ ︷︷ ︸

aggregation

]
.

(S13)

Governing equations in Linear Monge and numerical implementation

Surface representation

The surface parametrization for a Monge patch is given by

r(x, y, t) = xi+ yj + z(x, y, t)k. (S14)

The tangent and normal vectors are given by

a1 = i+ z,xk, a2 = j + z,yk, n =
(−z,xi− z,yj + k)

(1 + z2,x + z2,y)
1/2

. (S15)

The surface metric (aαβ) and curvature metric (bαβ) take the following forms

aαβ =

[
1 + z2,x z,xz,y
z,yz,x 1 + z2,y

]
, (S16)

and bαβ =
1

(1 + z2,x + z2,y)
1/2

[
z,xx z,xy
z,yx z,yy

]
. (S17)

Dimensionless governing equations

Here we summarize the governing equations for the coupled dynamics of the system in the dimensionless form where
the dimensionless numbers are presented in table 1. The tangential force balance equation becomes

∇λ̃−4w̃∇H̃+2(∇ · d̃−∇w̃ · b̃)+ f̃ ·τ = −∇η

[
2B̂Ŝ

T̂
log

η

1− η
− 4L̂Ŝ

T̂
(H̃− L̂Ŝη)− ÂB̂Ŝ

T̂
(2η−1)− ÂB̂

T̂
∆η

]
,

(S18)
along with the surface incompressibility relation,

∇ · ṽ = 2w̃H̃. (1)
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Table 1: List of dimensionless numbers and their definitions
Dimensionless Number Expression Physical interpretation Range

B̂ kBT
κ

Thermal energy
Bending energy 0.0125-0.05

L̂ ℓ
L

Spontaneous curvature length
Domain length 2× 10−3

Â γ
kBT

Aggregation coefficient
Diffusion coefficient 20

Ŝ [PS]satL
2 Domain area

Protein footprint 200

T̂ 2L2λ0

κ
Membrane tension energy

Bending energy 0.01-5

Pe λ0L
2

νD
Advection strength
Diffusion strength 1

The normal force balance relation takes the following form

∆(H̃ − L̂Ŝη) + 2(H̃ − ℓL[PS]satη)(2H̃
2 − K̃)

− 2B̂Ŝ H̃

[
{η log η + (1− η) log (1− η)}+ Â

2
η(1− η)

+
Â

4Ŝ
|∇η|2

]
− 2H̃

[
(H̃ − ℓ[PS]satLη)

2 +
κ̄

κ
K̃
]

− T̂
[
b̃ : d̃− w(4H̃2 − 2K̃)

]
= p̃+ fz + T̂ λ̃H̃.

(S19)

The mass conservation of PS is given by

ηt + Pe∇ · (ṽη) = kscramblase e
αH(s)η2(1− η)

− kP4ATPaseηe
βH(s) +∆η

[
1

1− η
+

2L̂2Ŝ

B̂
η − Âη

]
− η

[
2L̂

B̂
∆H +

Â

2Ŝ
∆2η

]
+∇η ·

[
∇η

(
1

(1− η)2
+

2L̂2Ŝ

B̂
− Â

)
− 2L̂

B̂
∇H̃ − Â

2Ŝ
∇(∆η)

]
.

(S20)

Numerical implementation

We numerically solved the dimensionless governing equations in the linear Monge regime, specifically equations S18
to S20, within a square domain featuring periodic boundary conditions. We performed numerical simulations on a
spatially uniform grid of size 64 × 64. A finite difference scheme is adopted to solve the transport equation for the
protein density (equation S20), whereas the velocity (equation 1 and equation S18) and the shape (equation S19)
were solved using a Fourier spectral method [hasimoto1959periodic]. We used A semi-implicit scheme for the time
marching for the protein density η with a time step ∆t = 3 × 10−4, with the nonlinear terms involving velocity and
curvature were treated explicitly. However, the nonlinear aggregation-diffusion terms were treated with linear implicit
terms. The resulting transport equation is shown below

ηn+1 − ηn

∆t
+ Pe∇ · (vn+1ηn+1) =[

kscramblase e
αH(s)η2(1− η)− kP4ATPaseηe

βH(s)
]n+1

+∇2ηn+1

[
1

1− η
+

2L̂2Ŝ

B̂
η − Âη

]n+1

− ηn+1

[
2L̂

B̂
∇2Hn+1

]
+ ηn+1

[
Â

2Ŝ
∇4ηn+1

]
+∇ηn+1 ·

[
∇η
(

1

(1− η)2
+

2L̂2Ŝ

B̂
− Â

)
− 2L̂

B̂
∇H − Â

2Ŝ
∇(∇2η)

]n+1

,

(S21)
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where the superscript n+ 1 indicates the explicit terms for time step n + 1, for which the currently available values
were considered. The explicit terms were further updated using an iterative scheme, and within each iteration, velocity
and shape were recalculated for the updated values of protein density. The iterations were performed within a time step
until convergence was achieved. For the convergence within a time step, we used a tolerance of 5 × 10−7. When the
differences between values of variables from successive iterations fell below the tolerance, we considered the values
of the variables to be converged in that time step.

Governing equations in axisymmetry and numerical implementation

We solved the governing equation (equation S8-S9) in the limit of axisymmetry where ∂
∂θ ≈ 0. The system of

equations can be represented in terms of arclength s as shown in Figure 4a. The surface metric and curvature tensor in
axisymmetry becomes

aαβ =

[
1 0
0 r2

]
, (S22)

and

bαβ =

[
ψs 0
0 r sinψ

]
. (S23)

The mean curvatures and Gaussian curvature simplify as

H =
1

2

(
ψs +

sinψ

r

)
, K = ψs

sinψ

r
. (S24)

Note that we introduced an angle ψ, which is the angle made by the tangent of the membrane with the cortex plane
(see Figure 4a). The tangential and normal components of the adhesive force becomes function of ψ as:

f = fses + fnn where, fs = f sinψ = −klinz sinψ

and fn = f cosψ = −klinz cosψ. (S26)

Note that, the total adhesive cortex force f = fses + fnn. Using the free energy given in equation 1, the tangential
force balance along the arclength becomes [3, 4, 5]

∂λ

∂s
+ fs =

∂C

∂s
[2κ(H − C)] . (S27)

Here, λ is the Lagrange multiples for area extensibility, and often interpreted as membrane tension [6, 7]. On the
other hand, the normal force balance illustrates shape of the membrane, and is given by [3, 4, 5]

1

r

∂

∂s

(
r
∂(κ(H − C))

∂s

)
+ 2κ(H − C)

(
2H2 −K

)
− 2H

[
κ(H − C)2

]
= p+ fn + 2λH.

(S28)

In equation S28, p is the normal pressure applied to the membrane and fn is the normal component of the cortex force
on the membrane.

We solved the governing equation (equation S27-S28) numerically in an axisymmetric membrane with temporally
evolving spontaneous curvature at according to equation S11 and the spatiotemporal density of linkers across the
simulation domain. The solution domain and boundary condition is presented in Figure 4. We split the higher-order
shape equation into two lower-order equations. We define M such that

M

r
=
∂(κ(H − C))

∂s
, (S29)

and use it to express the normal force:

1

r

∂M

∂s
+ 2κ(H − C)

(
2H2 −K

)
− 2H

[
κ(H − C)2

]
= p+ fn + 2λH. (S30)

Notably, L can be interpreted as the normal bending stress on the membrane, and we used the boundary condition of
L = 0 at the center of the membrane, indicating zero point force at the pole. To solve the tangential and normal force
balance equation, we used the MATLAB-based boundary value solver (bvp4c). The kinetic equation of spontaneous
curvatures and linkers density is solved with explicit time marching. We used a nonuniform grid ranging from 5,000
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to 100,000 points across the radial domain, with the finer grid towards the pole. We used a large solution domain size
of 104 nm2 compared to MP area to avoid boundary effects.

Ultimately, we solve a system of six ODEs for the membrane shape. Three of these equations arise from the assumption
of axisymmetry:

r′ = cosψ z′ = sinψ rψ′ = 2rH − sinψ (S31)

Finally, we also solve Equations S27 and S30. We prescribe the following boundary conditions at the pole s = 0:

r(0+) = 0, M(0+) = 0, ψ(0+) = 0. (S32)

At the edge (s = S) we prescribe the boundary conditions:

z(S) = 0, ψ(S) = 0, λ(S) = λ0. (S33)

Pulling force on the membrane

The pulling force on the membrane depends on the density of the linkers protein on the membrane and the vertical
displacement from the cortex plane. Note that each linker works as a linear spring and applies a force in the z-direction
of F̂ = −klin z. With ϕ being the area fraction of the linker density, the force per unit area f lin = ϕF̂ ẑ. The area
fraction is obtained by solving the binding and unbinding equation for linker density in time as given by equation 2.

Spontaneous curvature

The spontaneous curvature on the other-hand depends on the density of PS on the outer leaflet of the membrane which
is governed by equation S11. The area of lipid for PS, aPS , is around 0.58 nm2 and and induces a radius of curvature
on the membrane about 14.4 nm. Therefore the spontaneous curvature of each PS C0 ≈ 0.07 nm−1 [8]. We use
the PS kinetics from experiments to propose a spontaneous curvature function as C(η) = ℓ[PS] = ℓ[PS]satη, where
ℓ = C0aPS . Multiplying the PS kinetics by this constant factor ℓ gives us the rate equation for spontaneous curvature.
We consider 20% of area fraction, and resulting multiplication factor to convert C0 from η becomes 0.014.

Point force simulation

We first investigate the response of the linkers when the membrane is deformed with a point force. We used axisym-
metric simulation for this case, where point force is applied to the center; the results are presented in Figure 2. The
force magnitude is varied from 0.5 pN to 2 pN at the center (Figure 2B,D), and we also varied the value of the time
constant ratio (Figure 2A,C). The detachment of the linkers increases with a higher value of ζ, and force magnitude
further enhances the unbinding of linkers. The equilibrium concentration of linkers at the center matches well with
the theoretical estimation for smaller point forces (Figure 2F). However, this deviates from theoretical estimation for
higher force where bending of the membrane dominates.

Linear Monge Simulation

We simulate a 2-dimensional membrane influenced by spontaneous curvature induced by PS molecules and pulling
forces exerted by linker proteins. The governing equations equation S18-equation S20 are solved over a square mem-
brane patch. Note that the equation for PS transport (equation S20) incorporates the interactions among PS molecules
that drive their aggregation on the membrane. Depending on the local concentration of PS, spontaneous curvature
is applied, resulting in localized membrane deformation. Numerical methods, detailed in the section of Numerical
implementation, are used to solve these equations, providing the spatiotemporal distribution of PS molecules, linker
proteins, and the corresponding membrane deformation as hown in Figure 3A,B. Additionally, membrane tension are
shown from the simulation results in Figure 3C.

Axisymmetric simulation

The majority of the simulations presented in this paper on microparticle formation are in the axisymmetric domain.
The assumption here is that the PS is localized in a circular patch and induces membrane deformation as a result of
its spontaneous curvature. The resultant deformation is also coupled with the dynamics of linker detachments. The
spontaneous curvature is induced by the local concentration of PS that has a curvature-driven feedback, as shown by α
and β in equation S20. We investigate microparticle formation without curvature-driven feedback, and then investigate
the influence of curvature driven feedback on it.

6



ELECTRONIC SUPPLEMENTARY INFORMATION

Table 2: Notation used in the model
Notation Description Unit
W Free energy density per unit area of the membrane pN · nm−1

κ Bending modulus of the membrane pN · nm
s Arclength along the membrane nm
ψ Angle made by surface tangent with the horizontal direction 1
H Mean curvature nm−1

C Spontaneous mean curvature nm−1

f Force per unit area between the membrane and the cortex pN · nm−2

fpull Pulling point force pN

F̂ Force experience by each linker protein pN
klin linear spring constant of the linker pN · nm−1

p Normal pressure acting on the membrane pN · nm−2

λ Membrane tension pN · nm−1

kscramblase scramblase rate constant of PS s−1

kP4ATPase flipping rate constant of PS s−1

[PS]sat equilibrium concentration of of PS µM
kon Association rate constant of linkers s−1

koff Dissociation rate constant of linkers s−1

γ Effective interaction energy of PS pN · nm
ν membrane viscosity pN · s · nm−1

FD hydrodynamic drag force resisting mobility of PS pN · nm−2

Without curvature driven feedback

In this set of simulations α and β is considered zero, therefore local curvature has no direct impact on spontaneous
curvature. The results in Figure 5–Figure 7 do not include curvature driven feedback. Therefore, spontaneous curvature
depends solely on the PS concentration, and membrane curvature have one-way coupling with spontaneous curvature.
We see the formation of microparticles depends on various parameters like PS kinetics (Figure 5), Linkers’ stiffness
(Figure 6), bending rigidity and membrane tension (Figure 7). In all these simulations, we observed a timescale
imposed by the linkers’ depletion kinetics, and dynamics of membrane shape is governed by the timescale, and we
saw a similar trend in the temporal dynamics of the membrane tension as well as shown in Figure S2 and Figure S3,
where the role of PS kinetics and linkers’ stiffness klin were highlighted.

With curvature driven feedback

We investigated how the strength of curvature driven feedback on PS kinetics could influence successful MP formation.
To do this, we took conditions that were already favorable for successful MP formation from Figure 5,6, which are
WT PS kinetics and ζ = 1 and now tested how the strength of curvature dependent feedback (α and β) and linker
stiffness play a role in successful MP formation (Figure S1). In these simulations, α was chosen greater than β to
ensure that scramblase activity was dominant and that PS-induced spontaneous curvature would be similar to the WT
kinetics. We observed that the maximum deformation at the center of the membrane depended on the value of linker
stiffness and changes to the value of curvature driven feedback had a small effect Figure S1C. The fraction of bound
linkers depended on the value of linker stiffness (Figure S1D). The effective change in spontaneous curvature was not
large in the presence of curvature driven feedback (Figure S1A) and in all cases tested, we observed successful MP
formation (Figure S1B).

Supplementary Tables

The notation Figure 2 and values of parameters are summarized below in table 3.
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Table 3: List of parameters
Notation Description Range
κ Bending modulus of the membrane 40− 600 pN · nm (10− 150 kBT) [9]
λ0 Membrane tension at the boundary 0.001− 0.1 pN · nm−1 [10, 7]
acoat Coat area of the PS domain based on MP sizes 2.5× 104 − 5× 104 nm2 [11]
klin Linear spring constant of cortex 0.01− 0.1 pN · nm2 [12]
kon Association rate constant of the linkers 0.01− 0.1 s−1 [12, 13, 14]
koff Dissociation rate constant of the linkers 0.01− 0.1 s−1 [12, 13, 14]
kscramblase Rate constant PS flipping through scramblase 0.910− 2.25 s−1 [15]
kP4ATPase rate constant for P4ATPase activity 0.08− 0.2045 s−1 [15]
ν membrane viscosity 5× 10−6 pN · s · nm−1

ℓ spontaneous curvature of single PS 0.014 nm−1 [16]
aPS area occupied by single PS 0.58 nm2

Figure S1: Effect of curvature-driven feedback. We used non-zero values of α and β in equation S11. We tested two
different values of α, and β = 1 because the exact values of these parameters are not known. (A) The curvature-driven
feedback serves to very slightly alter the kinetics of PS-induced spontaneous curvature at the center of the membrane
as denoted by C0. (B) Membrane shapes at a final time for different values of α, β, and klin are shown. (C) Change
of maximum displacement of the membrane as a function of time (in min) for four different combinations α and β.
(D) Change in ϕ at the center of the membrane as a function of time (min) for the combinations of α and β shown in
(A). In all these simulations, the bending modulus was κ = 20kBT , tension was λ = 0.001 pN/nm, linkers’ stiffness
klin = 0.1 pN/nm and spontaneous curvature area was 50265 nm2.
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Figure S2: Role of PS kinetics on the membrane tension. The role of PS kinetics is presented here for all three
values of ζ. Linkers’ protein density at the center of the membrane (A,C,E)is plotted with time, and corresponding
membrane tension at the center of the membrane is shown (B,D,F). The time scale of linkers’ depletion at the center of
the membrane, as the PS kinetics changes from slow (A) to WT (B) and fast (C), corresponding tension at the center of
the membrane, are shown in (B),(D), and (F). In all these simulations, the bending modulus κ = 20kBT and tension
at the boundary λ = 0:001 pN/nm, and linkers’ stiffness klin = 0.1 pN/nm.

9
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Figure S3: Role of linker stiffness and time constant ratio on the membrane tension. The timescale of depletion
of linkers at the center of the membrane is shown for different values of time constant ratio (A) and linkers stiffness
(B). Tension at the center of the membrane for different values of ζ (C) and for different values of kinkers’ stiffness.
In all these simulations, the bending modulus κ = 20kBT and tension λ0 = 0.001 pN/nm.
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