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Table S1. Potential feedstocks for bioethanol synthesis.

It Sugar-based Sugarcane, Sugar beet, Sweet sorghum (stalk juice and grains), Sugar Maple, Tropical sugar [1], [2], [3],
Generation crops (sugar palm and nipa palm), Fruit based sugars, Honey, Agave nectar, Cactus pear, [4], [5], [6],
Carob pods [71, 8], [9]
Starch-based Cereals & Grains Corn (Maize), Wheat, Barley, Rice, Sorghum grains, Millets, Oats, Rye [10], [11],
Beans & Lentils Chickpeas (Garbanzo beans), Lentils, Faba Beans (broad beans), Peas [12], [13]
(Pisum sativum)
Nuts Chestnuts kernels, Acorn nuts
Starchy Vegetables Potato tuber, Sweet potato tuber, Cassava roots, Taro corms, Jerusalem
artichoke tuber
2nd Lignocellulosic Edible oil crop cake Soybeans, Rapeseeds (Canola), Sunflower, Palm, Coconut, Peanut [14]
Generation  biomass (Groundnut), Cottonseed, Sesame, Safflower
Virgin wood Poplar (Populus spp.), Eucalyptus (Eucalyptus spp.), Pine (Pinus spp.), [15], [16],

Douglas Fir (Pseudotsuga spp.), Acacia (Acacia spp.), Black Locust
(Robinia pseudoacacia), Cottonwood (Populus deltoides), Sweetgum
(Liquidambar styraciflua), Birch (Betula spp.)

[17],[18], [19]

Forest residue

Primary forest residue Branches, Stumps, Treetops, Bark,
Sawdust

Secondary forest residue Bark, Sawdust, Sawmill slabs, Wood
chips

[20]

Agricultural residue

Corn stover, Wheat straw, Rice straw, Sugarcane bagasse, Sorghum
stalk, Corn husk, Olive Pomace, Barley straw, Oats straw, Cotton stalks

[21],[22],[23]

Dedicated
crops

energy

Energy cane (Saccharum spp. hybrid) fibers, Jatropha
curcas) cake, Camelina (Camelina sativa) cake,
(Miscanthus spp.), Switchgrass (Panicum virgatum), Willow (Salix

(Jatropha
Miscanthus

spp.), Giant reed (Arundo donax), Napier Grass (Pennisetum
purpureum), Kenaf (Hibiscus cannabinus)

[24],  [25],
[26], [27], [28]




Water plants Water hyacinth, Duckweed (Lemna spp. and others), Seagrass (Zostera

spp-)

[29], [30], [31]

Chitin/Chitosan Outer shells of arthropods, such as insects and crustaceans [32]
Waste stream Municipal solid Food waste, Yard waste, Paper waste, Kitchen waste, Sewage sludge [33], [34],
waste [35], [36]
Organic industrial Dry distiller grains”, Glycerol, Lignin, Brewery waste [37], [38],
waste [39], [40]
3rd Microalgae Diatoms Phaeodactylum tricornutum, Thalassiosira pseudonana, Skeletonema [41], [42]
Generation® costatum
Dinoflagellates Crypthecodinium cohnii, Karenia spp., Prorocentrum spp. [43], [44], [45]
Cyanobacteria Nostoc muscorum, Nostoc sp., Arthrospira platensis [46],[47], [48]
(Blue-Green Algae)
Macroalgae Brown algae Laminaria japonica, Saccharina japonica, Macrocystis pyrifera [49], [50], [51]
(seaweed) Red algae Gelidium amansii, Kappaphycus alvarezii, Gracilaria [52],[53]
verrucosa, Eucheuma cottonii
Green algae Ulva fasciata Delile, Ulva lactuca, Ulva intestinalis [54],[55], [56]
4th GM plants and GM switchgrass, GM Populus, GM Maize, GM Rice straw (Cesa7 mutant), GM sugarcane, [57], [58],
Generation  crops GM Alfalfa (Medicago sativa) [59], [60],
[61], [62]
GM algae GM microalgae (Chlamydomonas reinhardtii), [63]
Engineered C. ragsdalei (DSM 15248), Scheffersomyces stipitis SP2-18, Genetically modified strains of [64], [65], [66]
Microbes S. cerevisiae (D452-2)
Artificial Genetically modified cyanobacterial strain Synechocystis sp. PCC 6803 [67]
Photosynthetic
systems
*Mostly, algae have high lipid content and are used to produce biodiesel. The carb-rich cell wall is used to produce bioethanol.
#considered as  second-generation  because it is a  residual product rather than a primary food source.



Table S2. Comparison of microalgae and macroalgae (third-generation biomass) based on morphological characteristics and other key

parameters.
Characteristics Microalgae Macroalgae (seaweed) Reference
Size Unicellular or colonial organisms, typically Multicellular and macroscopic algae, typical size [68], [69]
less than 0.1 mm in size ranging from a few centimeters to several meters
in length.
Habitat Freshwater, marine water, and sometimes Predominantly marine environments, attached to [68], [70], [71],

Photosynthetic Pigments

Classifications

Application

moist terrestrial habitats
Chlorophyll
like chlorophyll b, c,

a and various accessory

pigments and
carotenoids

Classified into groups such as diatoms,
dinoflagellates, and cyanobacteria (blue-

green algae)

Typically studied for their lipid content for
biofuel production, but some can also be
used for ethanol production from their

carbohydrates.

substrates or free-floating

Chlorophyll a, b, and accessory pigments like
phycobilin (in red and blue-green algae) and
fucoxanthin (in brown algae).

Classified based on their color (brown, red, green)

and structure (filamentous, leafy, encrusting).

These are rich in polysaccharides like cellulose
and alginate, which can be converted into

fermentable sugars for bioethanol production.

[72]
[73], [74], [75]

[76], [77], [78]

[79], [80], [81]




Table S3. Fermentation classifications based on the reactor's operational mode.

Fermentation Overview Pros Cons References
Type
Batch Simultaneous initial feeding of Low cost and contamination risk; Lesser ethanol production due to low [82], [83],
all components (nutrients, Easy to sterilize and operate. cell density; Downtime is long as [84]
microbes, and ingredients). emptying, vessel setup, cleaning,
Sugar and ethanol concentration sterilization, and refilling take time.
changes over time, alongside pH
and temperature fluctuations.
Fed-Batch Microbes inoculated in the Better control of pH, dissolved Higher cost to control the process; [82], [83],
media grow under batch regime oxygen, and temperature; limited Downtime is long as emptying, [85]
by feeding on the substrate byproduct formation; Increased cleaning, sterilization, vessel setup, and
present. Later, the substrate is cell lifespan; maximum viable refilling takes time.
added incrementally throughout cells in the reactor at any time;
the fermentation. Elevated concentration of
ethanol.
Continuous Carried out in plug flow reactor Achieve greater ethanol yield, Contamination risks can cause [82], [83],
or single or series of stirred tank cost efficiency, and heightened bioprocess failure; Complete [86], [87],
reactor. Fresh media productivity on a smaller scale; sterilization and cleaning of the process [88], [89]
continuously replaces used Effortlessly manageable and line are necessary; fresh inoculum is

media (having ethanol, toxic
metabolites, and low nutrient
content).

controllable; Time-saving
benefits for tasks like emptying,
cleaning, sterilization, refilling,
and media adjustment.

needed; Cell aggregation can impede
steady-state growth; and maintaining
filamentous organisms
heterogeneous media is complex.

in viscous,




Bioethanol as a Platform Chemical: Potential and Opportunities

Fuel and Energy Sector

Ethanol is commonly blended with gasoline to produce E10 (10% ethanol), E15 (15% ethanol),
and E85 (85% ethanol) fuels [90]. These blends help reduce GHG emissions and improve
octane ratings. Several nations, like the United States, India, Europe, and Brazil, have mandated
the blending of bioethanol[91], [92], [93], [94]. Research is ongoing to develop advanced
biofuels that combine ethanol with other renewable resources, potentially enhancing fuel
properties and expanding usage [95]. Shurong Wang et al. [96] derived bio-oil from the
pyrolysis of biomass, which was then blended with ethanol using the co-cracking method by
engaging an HSZM-5 catalyst. At optimal conditions of 400°C and 2 MPa, this process yielded
a high hydrocarbon content (99%) comprising C7-C10 aromatic hydrocarbons, toluene, xylene,
and methyl-ethyl-benzenes. Ethanol can also be reformed to produce hydrogen, which can be
used in fuel cells for clean energy applications [97]. This process offers a renewable pathway
for hydrogen production, complementing other methods like water electrolysis [98]. Moreover,
ethanol-derived jet fuel is an emerging area, offering a sustainable alternative to conventional

aviation fuels [99].

Chemical, Healthcare, and Pharmaceutical Industry

Bioethanol can be suitably used as a chemical intermediate, eliminating the use of conventional
ethanol and making a step forward towards sustainable and green synthesis of chemicals. For
example, bioethanol can be dehydrated to produce ethylene [100], a key building block for
numerous chemicals, including polyethylene (used in the manufacturing of bioplastics [101]),
ethylene oxide (used in detergents and antifreeze), and ethylene glycol (used in antifreeze and
polyester). Also, the oxidation of bioethanol produces acetic acid [102], a precursor for various
chemicals, including vinyl acetate (used in adhesives and paints) and acetate esters (used as

solvents). Bioethanol can be widely used as a solvent in industries such as pharmaceuticals,



cosmetics, and food processing owing to its low toxicity and effective solvating properties.
These are the niche markets that can pay better prices for bioethanol rather than fuel [103].
Other healthcare and sanitation applications of bioethanol are drug formulation (as it enhances
solubility and stability of active ingredients), sanitizers, and disinfectants (due to its

antimicrobial properties)

Food and Beverage Industry

Bioethanol is the primary alcohol produced by the fermentation of sugars in the production of
alcoholic beverages like beer, wine, and spirits [104]. It is also used as a preservative in food
products to inhibit microbial growth and extend shelf life [105]. Bioethanol is sometimes used
as a carrier and solvent for flavors and colorants in a variety of food and beverage products

[106].

Other Industrial Applications

Bioethanol serves as a solvent in the manufacturing of industrial coatings, adhesives, and
paints, ensuring optimal viscosity and drying characteristics. It also serves as an effective
solvent for industrial cleaning agents to remove grease, oil, and other contaminants from
machinery and equipment. Bioethanol's excellent thermal properties make it suitable for use in
cooling systems for high-performance computing and electronic devices [107]. Its low freezing

point and high heat of vaporization offer advantages over traditional coolants [108].
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