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Table S1. Potential feedstocks for bioethanol synthesis.

Sugar-based Sugarcane, Sugar beet, Sweet sorghum (stalk juice and grains), Sugar Maple, Tropical sugar 
crops (sugar palm and nipa palm), Fruit based sugars, Honey, Agave nectar, Cactus pear, 
Carob pods  

[1], [2], [3], 
[4], [5], [6], 
[7], [8], [9]

Cereals & Grains Corn (Maize), Wheat, Barley, Rice, Sorghum grains, Millets, Oats, Rye
Beans & Lentils Chickpeas (Garbanzo beans), Lentils, Faba Beans (broad beans), Peas 

(Pisum sativum)
Nuts Chestnuts kernels, Acorn nuts

1st 
Generation

Starch-based

Starchy Vegetables Potato tuber, Sweet potato tuber, Cassava roots, Taro corms, Jerusalem 
artichoke tuber   

[10], [11], 
[12], [13]

Edible oil crop cake Soybeans, Rapeseeds (Canola), Sunflower, Palm, Coconut, Peanut 
(Groundnut), Cottonseed, Sesame, Safflower

[14]

Virgin wood Poplar (Populus spp.), Eucalyptus (Eucalyptus spp.), Pine (Pinus spp.), 
Douglas Fir (Pseudotsuga spp.), Acacia (Acacia spp.), Black Locust 
(Robinia pseudoacacia), Cottonwood (Populus deltoides), Sweetgum 
(Liquidambar styraciflua), Birch (Betula spp.)

[15], [16], 
[17], [18], [19]

Primary forest residue Branches, Stumps, Treetops, Bark, 
Sawdust

Forest residue

Secondary forest residue Bark, Sawdust, Sawmill slabs, Wood 
chips

[20]

Agricultural residue Corn stover, Wheat straw, Rice straw, Sugarcane bagasse, Sorghum 
stalk, Corn husk, Olive Pomace, Barley straw, Oats straw, Cotton stalks

[21], [22], [23]

2nd 
Generation

Lignocellulosic 
biomass

Dedicated energy 
crops

Energy cane (Saccharum spp. hybrid) fibers, Jatropha  (Jatropha 
curcas) cake, Camelina (Camelina sativa) cake, Miscanthus 
(Miscanthus spp.), Switchgrass (Panicum virgatum), Willow (Salix 
spp.), Giant reed (Arundo donax), Napier Grass (Pennisetum 
purpureum), Kenaf (Hibiscus cannabinus)

[24], [25], 
[26], [27], [28]



Water plants Water hyacinth, Duckweed (Lemna spp. and others), Seagrass (Zostera 
spp.)

[29], [30], [31]

Chitin/Chitosan Outer shells of arthropods, such as insects and crustaceans [32]
Municipal solid 
waste

Food waste, Yard waste, Paper waste, Kitchen waste, Sewage sludge [33], [34], 
[35], [36] 

Waste stream

Organic industrial 
waste

Dry distiller grains#, Glycerol, Lignin, Brewery waste [37], [38], 
[39], [40] 

Diatoms Phaeodactylum tricornutum, Thalassiosira pseudonana, Skeletonema 
costatum

[41], [42]

Dinoflagellates Crypthecodinium cohnii, Karenia spp., Prorocentrum spp. [43], [44], [45]

Microalgae

Cyanobacteria 
(Blue-Green Algae)

Nostoc muscorum, Nostoc sp., Arthrospira platensis [46], [47], [48]

Brown algae Laminaria japonica, Saccharina japonica, Macrocystis pyrifera [49], [50], [51]
Red algae Gelidium amansii, Kappaphycus alvarezii, Gracilaria 

verrucosa, Eucheuma cottonii
[52], [53]

3rd 
Generation*

Macroalgae
(seaweed)

Green algae Ulva fasciata Delile, Ulva lactuca, Ulva intestinalis [54], [55], [56]
GM plants and 
crops

GM switchgrass, GM Populus, GM Maize, GM Rice straw (Cesa7 mutant), GM sugarcane, 
GM Alfalfa (Medicago sativa)

[57], [58], 
[59], [60], 
[61], [62] 

GM algae GM microalgae (Chlamydomonas reinhardtii), [63]
Engineered 
Microbes

C. ragsdalei (DSM 15248), Scheffersomyces stipitis SP2-18, Genetically modified strains of 
S. cerevisiae (D452-2)

[64], [65], [66]

4th 
Generation

Artificial 
Photosynthetic 
systems

Genetically modified cyanobacterial strain Synechocystis sp. PCC 6803 [67]

*Mostly, algae have high lipid content and are used to produce biodiesel. The carb-rich cell wall is used to produce bioethanol.  
#considered as second-generation because it is a residual product rather than a primary food source.



Table S2. Comparison of microalgae and macroalgae (third-generation biomass) based on morphological characteristics and other key 
parameters.

Characteristics Microalgae Macroalgae (seaweed) Reference

Size Unicellular or colonial organisms, typically 

less than 0.1 mm in size

Multicellular and macroscopic algae, typical size 

ranging from a few centimeters to several meters 

in length.

[68], [69]

Habitat Freshwater, marine water, and sometimes 

moist terrestrial habitats

Predominantly marine environments, attached to 

substrates or free-floating

[68], [70], [71], 

[72]

Photosynthetic Pigments Chlorophyll a and various accessory 

pigments like chlorophyll b, c, and 

carotenoids

Chlorophyll a, b, and accessory pigments like 

phycobilin (in red and blue-green algae) and 

fucoxanthin (in brown algae).

[73], [74], [75]

Classifications Classified into groups such as diatoms, 

dinoflagellates, and cyanobacteria (blue-

green algae)

Classified based on their color (brown, red, green) 

and structure (filamentous, leafy, encrusting).

[76], [77], [78]

Application Typically studied for their lipid content for 

biofuel production, but some can also be 

used for ethanol production from their 

carbohydrates.

These are rich in polysaccharides like cellulose 

and alginate, which can be converted into 

fermentable sugars for bioethanol production.

[79], [80], [81]



Table S3. Fermentation classifications based on the reactor's operational mode.

Fermentation 
Type

Overview Pros Cons References 

Batch Simultaneous initial feeding of 
all components (nutrients, 
microbes, and ingredients). 
Sugar and ethanol concentration 
changes over time, alongside pH 
and temperature fluctuations.

Low cost and contamination risk; 
Easy to sterilize and operate.

Lesser ethanol production due to low 
cell density; Downtime is long as 
emptying, vessel setup, cleaning, 
sterilization, and refilling take time.

[82], [83], 
[84]

Fed-Batch Microbes inoculated in the 
media grow under batch regime 
by feeding on the substrate 
present. Later, the substrate is 
added incrementally throughout 
the fermentation.

Better control of pH, dissolved 
oxygen, and temperature; limited 
byproduct formation; Increased 
cell lifespan; maximum viable 
cells in the reactor at any time; 
Elevated concentration of 
ethanol.

Higher cost to control the process; 
Downtime is long as emptying, 
cleaning, sterilization, vessel setup, and 
refilling takes time.

[82], [83], 
[85]

Continuous Carried out in plug flow reactor 
or single or series of stirred tank 
reactor. Fresh media 
continuously replaces used 
media (having ethanol, toxic 
metabolites, and low nutrient 
content).

Achieve greater ethanol yield, 
cost efficiency, and heightened 
productivity on a smaller scale; 
Effortlessly manageable and 
controllable; Time-saving 
benefits for tasks like emptying, 
cleaning, sterilization, refilling, 
and media adjustment.

Contamination risks can cause 
bioprocess failure; Complete 
sterilization and cleaning of the process 
line are necessary; fresh inoculum is 
needed; Cell aggregation can impede 
steady-state growth; and maintaining 
filamentous organisms in viscous, 
heterogeneous media is complex.

[82], [83], 
[86], [87], 
[88], [89] 



Bioethanol as a Platform Chemical: Potential and Opportunities

Fuel and Energy Sector

Ethanol is commonly blended with gasoline to produce E10 (10% ethanol), E15 (15% ethanol), 

and E85 (85% ethanol) fuels [90]. These blends help reduce GHG emissions and improve 

octane ratings. Several nations, like the United States, India, Europe, and Brazil, have mandated 

the blending of bioethanol[91], [92], [93], [94]. Research is ongoing to develop advanced 

biofuels that combine ethanol with other renewable resources, potentially enhancing fuel 

properties and expanding usage [95]. Shurong Wang et al. [96] derived bio-oil from the 

pyrolysis of biomass, which was then blended with ethanol using the co-cracking method by 

engaging an HSZM-5 catalyst. At optimal conditions of 400°C and 2 MPa, this process yielded 

a high hydrocarbon content (99%) comprising C7-C10 aromatic hydrocarbons, toluene, xylene, 

and methyl-ethyl-benzenes. Ethanol can also be reformed to produce hydrogen, which can be 

used in fuel cells for clean energy applications [97]. This process offers a renewable pathway 

for hydrogen production, complementing other methods like water electrolysis [98]. Moreover, 

ethanol-derived jet fuel is an emerging area, offering a sustainable alternative to conventional 

aviation fuels [99].

Chemical, Healthcare, and Pharmaceutical Industry

Bioethanol can be suitably used as a chemical intermediate, eliminating the use of conventional 

ethanol and making a step forward towards sustainable and green synthesis of chemicals. For 

example, bioethanol can be dehydrated to produce ethylene [100], a key building block for 

numerous chemicals, including polyethylene (used in the manufacturing of bioplastics [101]), 

ethylene oxide (used in detergents and antifreeze), and ethylene glycol (used in antifreeze and 

polyester). Also, the oxidation of bioethanol produces acetic acid [102], a precursor for various 

chemicals, including vinyl acetate (used in adhesives and paints) and acetate esters (used as 

solvents). Bioethanol can be widely used as a solvent in industries such as pharmaceuticals, 



cosmetics, and food processing owing to its low toxicity and effective solvating properties. 

These are the niche markets that can pay better prices for bioethanol rather than fuel [103]. 

Other healthcare and sanitation applications of bioethanol are drug formulation (as it enhances 

solubility and stability of active ingredients), sanitizers, and disinfectants (due to its 

antimicrobial properties)

Food and Beverage Industry

Bioethanol is the primary alcohol produced by the fermentation of sugars in the production of 

alcoholic beverages like beer, wine, and spirits [104]. It is also used as a preservative in food 

products to inhibit microbial growth and extend shelf life [105]. Bioethanol is sometimes used 

as a carrier and solvent for flavors and colorants in a variety of food and beverage products 

[106].

Other Industrial Applications

Bioethanol serves as a solvent in the manufacturing of industrial coatings, adhesives, and 

paints, ensuring optimal viscosity and drying characteristics. It also serves as an effective 

solvent for industrial cleaning agents to remove grease, oil, and other contaminants from 

machinery and equipment. Bioethanol's excellent thermal properties make it suitable for use in 

cooling systems for high-performance computing and electronic devices [107]. Its low freezing 

point and high heat of vaporization offer advantages over traditional coolants [108].
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