c.

Supporting Information (SI) for

Fabricating lignocellulosic films as potential biobased plastics

Antonella Rozaria Nefeli Pontillo^{a,b}, Sirui Chen^b, Diego Freire Ordóñez^a, Niall Mac Dowell^c, Koon-Yang Lee^a and Tom Welton*^b

a. Department of Aeronautics, Imperial College London, London, UK.

b. Department of Chemistry, Imperial College London, London, UK.

Center for Environmental Policy, Imperial College London, London SW7 2AZ, UK.

Figure S1: ³¹P NMR spectrum and elemental composition (table) of lignin.

Figure S2: Creep and recovery testing of the ionic liquid and the $[C_2C_1im][OAC]/DMSO$ mixture (a) and (b) the five dope solutions (DS)

Figure S3: (a) Storage and loss moduli (G' and G'') as a function of the frequency of oscillation for the five dope solutions. (b) Steady shear viscosity as a function of the shear rate for the solvent and the dope solutions (c).

Figure S4: Tensile strength - strain curves of the films.

Figure S5: Tensile strength - strain curves of a commercial cellophane film

Figure S6: Optical properties of the films: haze of films in the visible spectrum.

Figure S7: XRD patterns of cellulose (top) and lignin (bottom).

cellophane

73.60 ± 4.1

8.03 ± 0.7

3.99± 4.0

Figure S8: TGA curves of the two polymers (left) and the five samples (right).

Figure S9: FTIR spectra of the films and elemental analysis of samples F-0 and F-1.

Figure S11: Swelling behaviour of cellophane in different solvents.

Table S1: Stabil	ity tests of the films	F-0 F-1 F-3	F-4 and a commercial	cellophane sample in	different solvents.
		,,,	· · · · · · · · · · · · · · · · · · ·	. oottopnano oampto m	

	Change in mass (%)									
	F-0	F-1	F-3	F-4	cellophane					
H ₂ O	1.4	1.3	-0.7	-3.1	-6.5					
EtOH	1.5	1.4	0.8	-6.7	-4.5					
5wt% AcOH (aq)	0.0	0.7	0.0	-3.6	-5.7					
1wt% NaOH (aq)	1.7	-4.3	-13.4	-27.2	-13.3					
Hexane	-0.9	0.7	-3.2	-4.7	-3.8					
DCM	0.0	-0.4	0.0	-1.9	-5.7					
Brine	-3.3	12.2	12.1	0.0	6.0					

Figure S12: Films F-0, F-3 and F-4 (a) 30 s and (b) 24 h after submerged in 1% NaOH solution. (c) Films F-0, F-1, F-3 and F-4 72 h after submerged in 1% NaOH solution.

Figure S14: $^{13}\mathrm{C}\,\mathrm{NMR}$ spectra of the freshly synthesised and recycled ionic liquid .

Freshly synthesised ionic liquid (IL-0):

¹H NMR (400 MHz, DMSO-d₆) δ_{H} (ppm): 9.78 (s, 1H, imC(2)H), 7.78 (d, *J* = 35.8 Hz, 2H, imC(4)H, - C(5)H), 4.20 (q, *J* = 7.3 Hz, 2H, imC(6)H₂), 3.86 (s, 3H, imC(8)H₃), 1.54 (s, 3H, acetate-CH₃), 1.40 (t, *J* = 7.3 Hz, 3H, imC(7)H₃)

¹³C NMR (101 MHz, DMSO-d₆) δ_H (ppm): 172.53 (acetate-C(10)), 136.73 (imC(2)), 123.54 (imC(5)), 121.95 (imC(4)), 44.06 (imC(7)), 35.63 (imC(6)), 26.06 (acetate-C(9)), 15.15 (imC(8))

Ionic liquid retrieved after the 1st cycle of recycling (IL-1):

¹H NMR (400 MHz, DMSO-d₆) δ_{H} (ppm): 9.67 (s, 1H), 7.77 (d, *J* = 35.2 Hz, 2H), 4.20 (q, *J* = 7.3 Hz, 2H), 3.86 (s, 3H), 1.51 (s, 3H), 1.40 (t, *J* = 7.3 Hz, 3H)

¹³C NMR (101 MHz, DMSO-d₆) δ_H (ppm): 173.26, 137.80, 123.53, 122.01, 43.87, 35.41, 26.29, 15.25

Ionic liquid retrieved after the 2nd cycle of recycling (IL-2):

¹H NMR (400 MHz, DMSO-d₆) δ_{H} (ppm): 10.10 (s, 1H), 7.83 (d, *J* = 38.3 Hz, 2H), 4.21 (q, *J* = 7.3 Hz, 2H), 3.87 (s, 3H), 1.55 (s, 3H), 1.39 (t, *J* = 7.3 Hz, 3H)

¹³C NMR (101 MHz, DMSO-d₆) δH (ppm): 172.82, 137.51, 123.48, 121.92, 43.92, 35.48, 26.38, 15.20

Ionic liquid retrieved after the 3rd cycle of recycling (IL-3):

¹H NMR (400 MHz, DMSO-d₆) δ_{H} (ppm): 9.66 (s, 1H), 7.77 (d, *J* = 35.2 Hz, 2H), 4.20 (q, *J* = 7.3 Hz, 2H), 3.86 (s, 3H), 1.53 (s, 3H), 1.40 (t, *J* = 7.3 Hz, 3H)

¹³C NMR (101 MHz, DMSO-d₆) δ_H (ppm): 172.65, 137.02, 123.51, 121.93, 44.01, 35.58, 26.30, 15.18

Ionic liquid retrieved after the 4th cycle of recycling (IL-4):

¹H NMR (400 MHz, DMSO-d₆) δ_{H} (ppm): 10.05 (s, 1H), 7.83 (d, *J* = 38.0 Hz, 2H), 4.21 (q, *J* = 7.3 Hz, 2H), 3.87 (s, 3H), 1.55 (s, 3H), 1.39 (t, *J* = 7.3 Hz, 3H)

 ^{13}C NMR (101 MHz, DMSO-d_6) δ_{H} (ppm): 172.99, 137.54, 123.50, 121.95, 43.93, 35.48, 26.34, 15.24

Figure S15: FTIR spectra of the freshly synthesised and recycled ionic liquid.

Figure S16: TGA curves of the freshly synthesised and recycled ionic liquid

Table S2: Main properties of different biogenic and conventional films

	PLA	Chitosan	High Density Polyethyle ne (HDPE)	Low Density Polyethyle ne (LDPE)	Cellophane	PVA	starch	рус	pcl	gelatin	pbat	pbs	Polyethylen e terephthala te (PET)	polypropyle ne
biobased	Yes	Yes	Yes/No	Yes/No	Yes	No	Yes	No	No	Yes	No	Yes/No	Yes/ No	Yes/No
Biodegradable	Yes	Yes	No	No	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	No	No
mechanical properties	$E = 3.0 \pm 0.2$ GPa TS = 69.1 ± 0.1 MPa EB = 126.3 ± 14.6 % ^[1] TS = 20 MPa EB = 68 % E = 445 MPa ^[2] E = 2.24 ± 0.04 GPa TS = 58.0 ± 2.8 MPa EB = 3.6 ± 0.2% ^[3]	$TS = 6.64 \pm 0.77$ MPa EB = 79.13 ± 1.8 1 % ^[4] TS = 55.2 - 64.3 MPa EB = 11.9 - 13.7 % ^[5] E = 4.5 - 6.41 MPa ^[6] E = 3.1 GPa ^[7]	TS = 23 – 28 MPa EB = 7.5 - 10 mm/mm ^[9] TS = 29.9 ± 2.4 MPa E = 609 ±34 MPa EB = 770± 45 % ^[10]	TS = 10 - 24 MPa $EB = 129 - 591 \% ^{[11]}$ TS = 22 - 40 MPa EB = 393 - 734 E = 231 - 270 $MPa^{[12]}$	$TS = 73.60 \pm 4.1 MPa \\ EB = 8.03 \pm 0.7 \% \\ E = 3.99 \pm 4.0 \\ GPa \\ TS = 40 - 125 \\ MPa \\ EB = 8\% \\ E = 0.9 - 3 \\ GPa^{[13]} \\ TS = 30.2 \\ MPa \\ EB = 372.3 \% \\ Ym = 892.1 \\ MPa^{[14]} \\ \end{bmatrix}$	$TS = 6MPa^{[15]}$ $TS = 28.5 \pm 3.0$ MPa $EB = 220\%^{[16]}$ $TS = 19.80 MPa$ $E = 250 MPa$ $EB = 145\%^{[17]}$ $TS = 97.9 - 152.8 MPa$ $E = 2.98 - 4.14 GPa$ $EB = 7.5 - 25\%^{[18]}$	TS = 3MPa EB = 15% ^[19]	TS = 26 - 32 MPa EB = 163 - 246 E = 76 - 99 MPa ^[12] TS = 45.39 ± 4. 64 MPa EB = 22.18 ± 2.53% ^[20]	$TS = 17.94 \pm 2.69 \text{ MPa}$ $E = 131.3 \pm 12.4 \text{ MPa}$ $EB = 605.6 \pm 43.95 \%^{[21]}$ $TS = 23.9 \pm 5.0 \text{ MPa}$ $E = 129 \pm 11 \text{ MPa}$ $EB = 8.0 \pm 0.7\%^{[22]}$ $E = 225 \text{ MPa}$ $TS = 15 \text{ MPa}^{[23]}$	$TS = 82.69 \pm 3.21 \text{ MPa}$ E = 708.2 ± 10.54 MPa EB = 3.6 ± 1.45 % ^[21] TS = 29.5 - 135.2 MPa EB = 1.32 - 10.20 % ^[24]	TS = 17.7 - 15.9 MPa $EB = 637 - 547^{[25]}$ $E = 81.0 \pm 2.5 MPa$ $EB = 689.5 \pm 110.3\%$ $TS = 20.1 \pm 2.4 MPa^{[26]}$ E = 75 MPa TS = 14 MPa EB = 800 % ^[23]	E = 725.6 ± 15.6 MPa EB =7.1 ± 0.3% TS = 29.6 ± 1.5 MPa ^[27]	$E = 2.016 \times 10 \text{ GPa}$ $TS = 50.45 \text{ MPa} [27]$ $TS = 55 - 60 \text{ MPa}$ $E = 2.8 - 3 \text{ GPa}$ $EB = 280 - 320 \% [28]$	TS = 20.32 MPa E =1015 MPa ^[29] EB = 1000% E = 32 MPa TS = 14 MPa ^[30]
OP (cm ³ m·d ⁻ ^{1.} m ^{-2.} Pa ⁻¹) / OTR	2.12*10 ^{-7 [31]}		1.18*10 ⁻⁶ [10] 5.4*10 ⁻⁷ [32]	$\begin{array}{c} 1.95^{*}10^{\circ}\\ {}_{2} {}_{[33]}\\ 2.1^{*}10^{\circ 6}\\ {}_{[32]}\\ (13.4 \pm\\ 2)^{*}10^{\circ 4} {}_{[12]} \end{array}$		(2.65 - 141.7)*10 ⁻¹²		(6.5 ± 1.1)*10 ⁻⁴	25*10 ⁻⁶ cm ² ·STP/cm· h·bar ^[23]	(1.8 – 6.2)*10 ^{-9 [24]}	(8.54 ± 0.02)*10 ⁻⁷ ^[26] 7.5*10 ⁻⁶ cm ² .STP/cm· h·bar ^[23]	(1.90 ± 0.02) *10 ^{-7 [26]}	(1.18-2.8)*10 ^{.8} cm ³ m·d ⁻¹ ·m ⁻² ·Pa ⁻ 1 ^[25] 4.62*10 ^{.8} cm ³ m·d ⁻¹ ·m ⁻ ² ·Pa ⁻¹	(565±0.9)*1 0 ^{.9 [34]}
WVP (g·d ⁻¹ ·m ⁻¹ ·Pa ⁻¹) / WVTR	3.45*10 ^{-6 [2]}	$(0.23 \pm 0.002)*10^{-6}$ $(1.6 - 3.5)*10^{-4}$ [8]	1.18*10 ⁻⁴ g·m ⁻¹ ·d ⁻¹ ^[32]	0.21*10 ⁻⁶ [33] 3.78*10 ⁻⁴ g·m ⁻¹ ·d ⁻ 1 [32] (20 ± 4) *10 ⁻³	14*10 ⁻⁶ [36]	0.60*10 ^{-6 [17]}	0.65*10 ^{.7} g·m [.] ⁷ g·m [.] ¹ .d ^{.1} ^[19]	0.78 ± 0.1 g·m ⁻¹ ·d ⁻¹ ^[12]	(1.54 ± 0.04)*10 ⁻⁶ ^[35]	(22.4 – 45.2)*10 ⁻⁶ ^[37]	(11.0 ± 0.12)*10 ⁻⁶ [26]	(4.3 ± 0.02)*10 ⁻⁶ [26]	(9.5 ± 0.8) *10 ^{.8} g·d ^{-1.} m ^{-1.} Pa -1	

		(4.74 ± 0.05)*10 ⁻⁶		g·m ⁻¹ ·d ⁻¹ [12]									
T _m (°C)	146 ^[2] 140.8 - 163.4 ^[31]		134 ^[32] 130 ^[38]	113 ^[32] 107.6 ^[38] 106.3 ^[33]			141.61 ^{[1} 9]			120.9 ^[26]	101.8, 113.6 ^[26]	250.2 ^[39] 245 ^[31]	140 ^[40]
т _g (°С)	61 ^[2] 66.1 - 71.4 ^[31]	171 – 175 ^[5]						93.5 ^[20]				60 - 84 ^[28] 78.98 ^[39]	
Wca (°)	79.7 - 81.2 [1]			72 ^[11]	12/35 ^[41]				84.8 ± 3.4 ^[21]				92 ^[40]
T₀ (°C)	384.8 ^[42]	107, 292 ^[4]	460 ^[10]	456.2 ^[11]		250, 450 ^[14]	250- 270 ^[19]	287.7, 453.8 ^[20]	380 ^[22]	407 ^[26]	402 ^[26]		

References

[1] J. R. Rocca-Smith, T. Karbowiak, E. Marcuzzo, A. Sensidoni, F. Piasente, D. Champion, O. Heinz, P. Vitry, E. Bourillot and E. Lesniewska, Polymer Degradation and Stability 2016, 132, 109-116.

[2] J. Bonilla, E. Fortunati, M. Vargas, A. Chiralt and J. M. Kenny, Journal of Food Engineering 2013, 119, 236-243.

[3] M. Jamshidian, E. A. Tehrany, M. Imran, M. J. Akhtar, F. Cleymand and S. Desobry, Journal of food Engineering 2012, 110, 380-389.

[4] Z.-H. Zhang, Z. Han, X.-A. Zeng, X.-Y. Xiong and Y.-J. Liu, International Journal of Biological Macromolecules 2015, 81, 638-643.

[5] W. Thakhiew, S. Devahastin and S. Soponronnarit, Journal of Food Engineering 2010, 99, 216-224.

[6] C. A. Kienzle-Sterzer, D. Rodriguez-Sanchez and C. Rha, Die Makromolekulare Chemie: Macromolecular Chemistry and Physics 1982, 183, 1353-1359.

[7] A. Aryaei, A. H. Jayatissa and A. C. Jayasuriya, Journal of the mechanical behavior of biomedical materials 2012, 5, 82-89.
[8] G. Kerch and V. Korkhov, European Food Research and Technology 2011, 232, 17-22.

[9] K. Majewski, S. Mantell and M. Bhattacharya, Polymer Degradation and Stability 2020, 171, 109027.

[10] K. Chrissafis, K. Paraskevopoulos, I. Tsiaoussis and D. Bikiaris, Journal of Applied Polymer Science 2009, 114, 1606-1618.

[11] E. Kibirkštis, V. Mayik, R. Zatserkovna, K. Vaitasius, A. Stepanenko, R. Kandrotaitè-Janutienė, I. Venytė and P. P. Danilovas, Polymer Testing 2022, 112, 107646.

[12] C. Chirilli and L. Torri, Foods 2023, 12, 3672.

[13] a) E. González Carmona, I. Schlapp-Hackl, S. Jääskeläinen, M. Järvinen, K. Nieminen, D. Sawada, M. Hummel and H. Sixta, Cellulose 2023, 30, 11633-11648; b) I. S. Makarov, L. K. Golova,

G. N. Bondarenko, T. S. Anokhina, E. S. Dmitrieva, I. S. Levin, V. E. Makhatova, N. Z. Galimova and G. K. Shambilova, Membranes 2022, 12, 297.

[14] P. Jia, M. Zhang, C. Bo, L. Hu and Y. Zhou, Polish Journal of Chemical Technology 2015, 17, 29-33.

[15] N. Chousidis, Engineering Research Express 2024, 6, 025010.

[16] J.-p. Jeong, I. Yoon, K. Kim and S. Jung, Polymers 2024, 16, 1783.

[17] H. Abral, A. Atmajaya, M. Mahardika, F. Hafizulhaq, D. Handayani, S. Sapuan and R. Ilyas, Journal of Materials Research and Technology 2020, 9, 2477-2486.

[18] S. Zeng, L. Li and Q. Wang, Polymer Testing 2023, 126, 108143.

[19] M. Patel, S. Islam, P. Kallem, R. Patel, F. Banat and A. Patel, International Journal of Environmental Science and Technology 2023, 20, 7843-7860. [20] M. A. Da Silva, M. G. A. Vieira, A. C. G. Maçumoto and M.
 M. Beppu, Polymer Testing 2011, 30, 478-484.

 [21] M. Khorramnezhad, B. Akbari, M. Akbari and M. Kharaziha,
 Colloids and Surfaces B: Biointerfaces 2021, 200, 111582.
 [22] S. Holešová, K. Čech Barabaszová, M. Hundáková, M.
 Ščuková, K. Hrabovská, K. Joszko, M. Antonowicz and B. Gzik-Zroska, Polymers 2021, 13, 3193.

[23] F. M. Sousa, F. B. Cavalcanti, V. A. Marinho, D. D. Morais, T. G. Almeida and L. H. Carvalho, Polymer Bulletin 2021, 1-12.
 [24] R. Avena-Bustillos, B.-s. Chiou, C. Olsen, P. Bechtel, D. Olson and T. McHugh, Journal of food science 2011, 76, E519-E524.

[25] X. Diao, C. Zhang and Y. Weng, Polymers 2022, 14, 484.

[26] A. R. de Matos Costa, A. Crocitti, L. Hecker de Carvalho, S. C. Carroccio, P.

Cerruti and G. Santagata, Polymers 2020, 12, 2317.

[27] S. Gupta, M. Dixit, K. Sharma and N. Saxena, Surface and Coatings Technology 2009, 204, 661-666.

[28] R. Nisticò, Polymer Testing 2020, 90, 106707.

[29] D. Ferrer-Balas, M. L. Maspoch, A. Martinez and O.

Santana, Polymer 2001, 42, 1697-1705.

[30] A. J. Lovinger and M. Williams, Journal of Applied Polymer Science 1980, 25, 1703-1713.

[31] R. Auras, B. Harte and S. Selke, Journal of Applied Polymer Science 2004, 92, 1790-1803.

[32] M. Kamal, I. Jinnah and L. Utracki, Polymer Engineering & Science 1984, 24, 1337-1347.

[33] B. J. Ahn, K. K. Gaikwad and Y. S. Lee, Journal of Applied Polymer Science 2016, 133.

[34] V. Siracusa, I. Blanco, S. Romani, U. Tylewicz and M. Dalla Rosa, Journal of food science 2012, 77, E264-E272.

[35] N. Sharmin, R. A. Khan, S. Salmieri, D. Dussault and M. Lacroix, Journal of Polymers and the Environment 2012, 20, 698-705.

[36] S. I. Paunonen, 2013.

[37] R. Avena-Bustillos, C. Olsen, D. Olson, B.-s. Chiou, E. Yee, P. Bechtel and T. McHugh, Journal of food science 2006, 71, E202-E207.

[38] X. M. Zhang, S. Elkoun, A. Ajji and M. Huneault, Polymer 2004, 45, 217-229.

[39] M. R. Galdi, V. Nicolais, L. Di Maio and L. Incarnato, Packaging Technology and Science: An International Journal 2008, 21, 257-268.

[40] S. H. Akella, S. S. RS, A. Ahire and N. K. Mal, Scientific Reports 2018, 8, 12082.

[41] a) A. Liukkonen, Scanning 1997, 19, 411-415; b) C. Yamane, T. Aoyagi, M. Ago, K. Sato, K. Okajima and T. Takahashi, Polymer journal 2006, 38, 819-826.

[42] S. Xiang, L. Feng, X. Bian, G. Li and X. Chen, Polymer Testing 2020, 81, 106211.