Recovery valuable metals from lithium-containing aluminum electrolyte slag by a NaOH leaching-aging-water leaching process

Ting Zhou^{a,†}, Chenyu Zhang^{a,†}, Rui Xu^{a,b}, Sha Luo^{a,*}, Wenzhang Li^a, Yang Liu^{a,*}

a School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China

b XuZhou China Mining Geotechnical Technology Co., LTD

Corresponding author: rosa619@qq.com, yangliu_csu@csu.edu.cn

[†] The authors contribute equally for this work

Table S1 Main element content of material								
Element	F	Na	Al	Ca	Κ	Mg	Si	
Content(wt.%)	55.5	24.76	13.65	2.91	2.70	0.30	0.04	

Figure S1 XRD pattern of aluminum electrolyte slag

Figure S2 SEM images of aluminum electrolyte slag

Figure S3 EDS measurements region and related data for aluminum electrolyte slag

Figure S4 Leaching efficiencies of valuable metals under the conditions of 4.44 mol·L⁻¹ NaOH, 90°C, L/S=9

S1. Factorial Design and Regression Equations

The primary objective of this section is to determine the factors that most significantly influence the leaching efficiency of each metal in the sodium hydroxide leaching experiments. A factorial design method from Design of Experiments (DOE) was employed to further explore the interactions between individual factors. This method is a comprehensive and efficient experimental design approach that not only analyzes differences between different levels within each factor but also examines interactions among various combinations ^{1, 2}. The factorial design method was also used to establish a regression model between metal ions and factors, employing nonlinear fitting to identify the interactions among the four factors. This approach can determine the key influencing factors to optimize the response variables to the greatest extent ³.

The specific procedure involves first standardizing the experimental conditions and leaching efficiency results using a z-score model to ensure comparability. Subsequently, the standardized results are inputted into Matlab 9.6.0 software for nonlinear fitting to establish a full factorial regression model of metal ion leaching rates. Next, the model is subjected to iterative factor interaction calculations using SPSS software. Spearman correlation coefficient analysis (utilizing the Spearman function, an integrated function within the software for assessing inter-factor correlations) is employed to determine the significance (sig value) of each factor's relationship with the response variable ⁴. Details of the experimental conditions considered, standardized results, and leaching efficiencies of different metal ions in the experimental factorial design are summarized in Table S2.

	Conc.	T	L/S	t				
No.	$(mol \cdot L^{-1})$	(°C)	(mL/g)	(h)	x_1	x_2	x_3	x_4
1	1.11	90.00	9.00	4.00	-2.94	0.03	0.06	0.45
2	2.22	90.00	9.00	4.00	-2.14	0.03	0.06	0.45
3	3.33	90.00	9.00	4.00	-1.35	0.03	0.06	0.45
4	4.44	90.00	9.00	4.00	-0.55	0.03	0.06	0.45
5	5.56	90.00	9.00	4.00	0.25	0.03	0.06	0.45
6	6.67	90.00	9.00	4.00	1.04	0.03	0.06	0.45
7	10.00	90.00	9.00	4.00	3.43	0.03	0.06	0.45
8	5.56	28.00	9.00	4.00	0.25	-3.52	0.06	0.45
9	5.56	60.00	9.00	4.00	0.25	-1.69	0.06	0.45
10	5.56	75.00	9.00	4.00	0.25	-0.83	0.06	0.45
11	5.56	90.00	9.00	4.00	0.25	0.03	0.06	0.45
12	5.56	120.00	9.00	4.00	0.25	1.75	0.06	0.45
13	5.56	150.00	9.00	4.00	0.25	3.47	0.06	0.45
14	5.56	90.00	9.00	4.00	0.25	0.03	0.06	0.45
15	5.56	90.00	9.00	4.00	0.25	0.03	0.06	0.45
16	5.56	90.00	3.00	4.00	0.25	0.03	-2.70	0.45
17	5.56	90.00	4.50	4.00	0.25	0.03	-2.01	0.45
18	5.56	90.00	6.00	4.00	0.25	0.03	-1.32	0.45
19	5.56	90.00	9.00	4.00	0.25	0.03	0.06	0.45
20	5.56	90.00	18.00	4.00	0.25	0.03	4.22	0.45
21	5.56	90.00	9.00	0.50	0.25	0.03	0.06	-2.28
22	5.56	90.00	9.00	1.00	0.25	0.03	0.06	-1.89
23	5.56	90.00	9.00	2.00	0.25	0.03	0.06	-1.11
24	5.56	90.00	9.00	3.00	0.25	0.03	0.06	-0.33
25	5.56	90.00	9.00	4.00	0.25	0.03	0.06	0.45
26	5.56	90.00	9.00	4.00	0.25	0.03	0.06	0.45
27	5.56	90.00	9.00	6.00	0.25	0.03	0.06	2.01

Table S2 Experimental design and data standardization results

	Conc.	Т	L/S	t				
No. (mol·l	$(mol \cdot L^{-1})$	(°C)	(mL/g)	(h)	x_1	x_2	x_3	x_4
28	4.44	90.00	9.00	0.50	-0.55	0.03	0.06	-2.28
29	4.44	90.00	9.00	1.00	-0.55	0.03	0.06	-1.89
30	4.44	90.00	9.00	1.50	-0.55	0.03	0.06	-1.50
31	4.44	90.00	9.00	2.00	-0.55	0.03	0.06	-1.11
32	4.44	90.00	9.00	4.00	-0.55	0.03	0.06	0.45

S1.1 The analysis of Al leaching results

The variance analysis results of the model are shown in Table S3. The model has a goodness of fit of 0.86, indicating a certain degree of reliability in the regression model. Through Spearman correlation analysis, the two-tailed interaction relationships between factors and responses in the regression model were calculated. If the sig value is less than 0.05, the correlation is considered more significant. It was found that the sig values for x_2 and x_3 with respect to A1 are 0.008 and 0.024, respectively, indicating that reaction temperature and L/S have a more significant correlation with aluminum leaching efficiency. The sig values for x_1 and x_4 with respect to A1 are 0.501 and 0.982, respectively, suggesting that NaOH concentration and reaction time do not have a significant correlation with aluminum leaching efficiency.

Source	Sum of squares	Degree of freedom	Mean square			
Regression	24.777	24	1.032			
Residual error	0.175	8	0.022			
Total before correction	24.952	32				
Revised total	1.256	31				
Dependent variable : Al						
$R^2 = 1$ - (Residual sum of squares) / (Modified sum of squares) =0.86						

Table S3 Regression model variance analysis for leaching efficiency of Al

S1.2 The analysis of Li leaching results

The variance analysis results of the model are shown in Table S4. The model has a goodness of fit of 0.93. According to Spearman correlation analysis, the sig values of x_1, x_2 and x_3 with respect to Li are 0.002, 0.049 and 0.003, indicating NaOH concentration, reaction temperature and L/S have more significant correlations with leaching efficiency of lithium.

Source	Sum of squares	Degree of freedom	Mean square			
	1	0	1			
Regression	11.097	24	0.462			
Residual error	0.132	8	0.016			
Total before correction	11.228	32				
Revised total	1.905	31				
Dependent variable : Li						
$R^2 = 1$ - (Residual sum of squares) / (Modified sum of squares) =0.93 \circ						

S1.3 The analysis of K leaching results

The variance analysis results of the model are shown in Table S5. The goodness of fit of the model is 0.84. The sig values of x_1 , x_2 , x_3 , and x_4 for K are 0.447, 0.287, 0.713 and 0.823, respectively, indicating that the correlation among reaction temperature, reaction time, liquid-to-solid ratio, and the leaching efficiency of K is not significant enough.

Source	Sum of squares	Degree of freedom	Mean square				
Regression	10.684	24	0.445				
Residual error	0.019	8	0.002				
Total before correction	10.703	32					
Revised total	0.114	31					
Dependent variable : K							
R^2 = 1 - (Residual sum of squares) / (Modified sum of squares) =0.84 \circ							

Table S5 Regression model variance analysis for leaching efficiency of K

Figure S5 SEM images of precipitate after aging

Figure S6 EDS measurements region and related data for precipitate after aging

Table S6 Mass fractions of Li and Al in Li/Al-LDHs san	nple
--	------

Element	Al	Li
Content (wt.%)	87.98	12.02

Figure S7 SEM images of Li₂CO₃

Figure S8 SEM images of AlOOH

Figure S9 EDS measurements region and related data for AlOOH

Figure S10 SEM image and EDS data for NaF product

Figure S11 The mass of main product in this experiment

Accoring to Figure S11, the ideal yield for NaF is 17.48 g for the experiments using 10g NaOH, 5 g aluminum electrolyte slag and 45 mL DI water. The actual yield is 14.28 g. Considering the mass of solid is about 18.42 g after NaOH leaching, the loss of yield may be due to the overflow and residual in the breaker during evaporation and washing. Besies, the ideal yield of Li2CO3 is 0.85g. The acutual value is 0.314 g, and the loss of yield is due to ~40% of Li stay in the solid, ~24% of Li was in the water leaching solution or loss during the treatment.

	RMC/kg	g Heating	TAC/kg	TBC/kg	TSC/kg Re	ef.
 Na₂CO₃ leaching; Li₂CO₃ precipitation. 	4.1	One-stage leaching: 180°C; Multi-stage leaching: 80°C.	/	Na ₂ CO ₃ :3.07	/ 5	
 Roasting; HNO₃ acid leaching; Impurity removal by neutralization and filtration; Li₂CO₃ precipitation. 	25.64	Roasting: 650°C; Nitric acid leaching: 60°C; Evaporation and concentration of Li ₂ CO ₃ : 90°C.	HNO3(68wt.%):174.2	1 CaO:3.12; 1 Na ₂ CO ₃ :10.04	/ 6	
 ①HNO₃-Al(NO₃)₃ leaching; ②Neutralization of the leaching solution; ③Tri according to the leaching solution; 	19.23	 Leaching temperature: 80°C; Leaching solution neutralization: 80°C; Li₂CO₃ precipitation 	HNO ₃ (68wt.%):71.27	NaOH:28.51; Na ₂ CO ₃ :15.27	Al(NO ₃) ₃ : ₇ unstated	
 ③Li₂CO₃ precipitation. ① H₂SO₄ Leaching; ② Impurity removal; ③ Li₂CO₃ precipitation 	12.56	 i) Leaching temperature: i) Leaching temperature: ii) C; ii) Li₂CO₃ precipitation temperature: 95°C 	H ₂ SO ₄ (98%):2.82	NaOH:1.83; Na ₂ CO ₃ :0.77	EDTA: 8 unstate	
 Na₂CO₃ leaching; LiAlLDH precipitation. water leaching; 	15.92	leaching: 90°C water leaching: 120-200°C	/	NaOH 31.85 Na ₂ CO ₃ :2.55	This work	

Table S7 Consumption in different methods for recovery lithium into Li₂CO₃ (1kg) from the lithium-containing slags

④ Li₂CO₃ precipitation.

Note: RMC: Raw material consumption; TAC: Total Acid Consumption; TBC: Total Base Consumption; TSC: Total Salt Consumption.

Input cost	NaOH	ore	Na ₂ CO ₃	water	electric	Summary
kg	31.85	15.9	2.55			
RMB/t	1030	2500	1050			
RMB	32.80	39.75	2.68	1.6	6	82.83
Output value	NaF	Li ₂ CO ₃				
kg	45.48	1				
RMB/t	6000	87000				
RMB	272.87	87.00				359.87

T = 11 CO T = 1	• •	4 1		1	· /1 ·	.1 1
I able SX The estimated	inniif	cost and	output	value	in thic	method
1 abic 50 The command	mpui	cost and	ouipui	varue	m uns	memou
	-		1			

Note: the value of chemicals is according to the report value in https://www.chemicalbook.com/

References:

- L. E. Dee, P. J. Ferraro, C. N. Severen, K. A. Kimmel, E. T. Borer, J. E. K. Byrnes, A. T. Clark, Y. Hautier, A. Hector, X. Raynaud, P. B. Reich, A. J. Wright, C. A. Arnillas, K. F. Davies, A. MacDougall, A. S. Mori, M. D. Smith, P. B. Adler, J. D. Bakker, K. A. Brauman, J. Cowles, K. Komatsu, J. M. H. Knops, R. L. McCulley, J. L. Moore, J. W. Morgan, T. Ohlert, S. A. Power, L. L. Sullivan, C. Stevens and M. Loreau, *Nature Communications*, 2023, **14**, 2607.
- 2. T. Y. Mou, H. S. Pillai, S. W. Wang, M. Y. Wan, X. Han, N. M. Schweitzer, F. L. Che and H. L. Xin, *Nature Catalysis*, 2023, **6**, 122-136.
- 3. A. Hojjati-Najafabadi, P. N. Esfahani, F. Davar, T. M. Aminabhavi and Y. Vasseghian, *Chemical Engineering Journal*, 2023, **471**, 144485.
- 4. P. Schober, C. Boer and L. A. Schwarte, *Anesthesia and Analgesia*, 2018, **126**, 1763-1768.
- 5. R. Xu, S. Luo, W. Li, C. Zhang, Z. Chen, Y. Wang, Y. Liu and J. Li, *Industrial & Engineering Chemistry Research*, 2023, **62**, 14537–14547.
- S. Wu, W. Tao, Y. Zheng, H. Ge, J. He, Y. Yang and Z. Wang, *Waste Management*, 2021, 134, 89-99.
- 7. S. Wu, W. Tao, Y. Zheng, Y. Yang, J. Yu, J. Cui, Y. Lu, Z. Shi and Z. Wang, *Hydrometallurgy*, 2020, **198**, 105505.
- 8. W. Wang, W. J. Chen and H. T. College, *Hydrometallurgy*, 2019, **185**, 88-92.