Supplementary Information

Transparent and Flexible MXene-Chitosan Nanocomposite Film as Effective UV and High-Energy Blue Light Shielding Applications

Md. Hanif Munshi^{a,b}, Md. Didarul Islam^c, M. Mehedi Hasan^{a,d}, Md Nasiruddin^e, S.M. Fazle Rabbi^a, Shaikh Almoon Hussain^a, Md. Kamruzzaman^a*

^aDepartment of Applied Chemistry and Chemical Engineering, Faculty of Engineering, Gopalganj Science and Technology University, Gopalganj-8100, Bangladesh.

^bDepartment of Textile Engineering, Uttara University, Dhaka, 1230, Bangladesh.

^cNational Institute of Textile Engineering and Research, University of Dhaka, Dhaka 1000, Bangladesh.

^dDepartment of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States.

^eDepartment of Chemistry, Faculty of Science, Gopalganj Science and Technology University, Gopalganj-8100, Bangladesh

Figure S1. The Production of CS from Shrimp Shell by Chemical Synthesis

Samples	Left side	Right side	Up side	Down side	Center	Overall Thickness
CS	0.009	0.011	0.01	0.013	0.009	0.0104 ± 0.001
CMX-0.005	0.011	0.014	0.012	0.012	0.012	0.0122 ± 0.001
CMX-0.01	0.013	0.015	0.013	0.014	0.014	0.0138 ± 0.0008
CMX-0.02	0.011	0.014	0.012	0.015	0.011	0.0126 ± 0.002
CMX-0.04	0.012	0.015	0.016	0.015	0.013	0.0144 ± 0.002

Table S1. Thickness of CS and CMX films at five sites for each film.

*Values are given as mean ± standard deviation

Table S2. The ATR-FTIR spectra of the synthesized CS, MXene and CMX films.

CS					
3430	Stretching vibration of – OH, –NH ₂ group				
1656	Vibrations of carbonyl group (amide band I)				
1590	Presence of amide band II (–NH ₂ bending)				
2884 & 1430	Presence –CH ₂ groups' in CH ₂ OH				
1340	-CH ₃ group of NHCOCH ₃ (Amide III)				
1150	Oxygen stretching of glycosidic linkage				
1082 & 1023	Skeletal vibrations involving the C-O stretching				
908	Pyranose ring				
1430 to 492	Presence of CH ₃ , CH ₂ , CH groups, primary and secondary -				
	OH groups; attached to the pyranose ring				
MXene					
3385	Stretching vibration of –OH				
1680 & 1608	Stretching vibration C=O				
590	Stretching vibration Ti-O				
1420	Bending vibration –OH				
1140	Stretching vibration C-F				
1048	Stretching vibration of C–O				
745	Bending vibration Ti-F				
СМХ					
3352	Stretching vibration of –OH				
1652	Stretching vibration of C=O & –O group				
550	–F group				
1560	N–H bending vibration bands				
1020	1020 –C–O bending vibration				

Figure S2. XRD spectrum of pure CS, MXene powder and CMX-0.04 film.

Transmittance (%)							
Т%	200-280 (UV-C)	280-315 (UV-B)	315-400 (UV-A)	400-450 HEBL	450-800	450-900	
CS	53.21	72.63	83.49	89.16	90.66	90.85	
CMX-0.005	22.99	34.20	49.74	60.44	67.12	67.73	
CMX-0.01	2.36	5.14	18.61	31.66	43.83	45.08	
CMX-0.02	0.34	0.66	6.25	14.86	29.67	31.73	
CMX-0.04	0	0	0.45	2.52	14.46	16.90	
Blocking (%)							
B%	200-280 (UV-C)	280-315 (UV-B)	315-400 (UV-A)	400-450 HEBL	450-800	450-900	
CS	46.79	27.37	16.51	10.84	9.34	9.15	
CMX-0.005	77.01	65.80	50.26	39.56	32.88	32.27	
CMX-0.01	97.64	94.86	81.39	68.34	56.17	54.92	
CMX-0.02	99.66	99.34	93.75	85.14	70.33	68.27	
CMX-0.04	100.00	100.00	99.55	97.48	85.54	83.10	

Table S3. The Transmittance and Blocking data of synthesized CS, and CMX films.

Table S4. Initial weight of films (M_i), Final weight of dried films (M_f) after 105° C, Moisture content (MC%), Wet (W_{wet}) and Dry (W_{dry}) samples, Swelling Index (W%), and initial dry weight (${}^{W}i$), final dry weight (${}^{W}f$) at 105 °C for 24 h Solubility (WS%) of the Prepared Films.

Samples	Mi	M _f	MC (%)	W _{dry}	Wwet	%W (%)	M _f /W _i	W _f	%WS (%)
CS	4.4	3.4	22.73	4.40	5.7	29.55	3.4	3.0	11.76
CMX-0.005	4.4	3.5	20.45	4.50	5.1	13.33	3.5	3.2	8.57
CMX-0.01	4.3	3.5	18.60	4.35	4.9	12.64	3.5	3.3	5.71
CMX-0.02	3.8	3.4	10.53	3.85	4.3	11.69	3.4	3.2	5.88
CMX-0.04	4.7	4.3	8.51	4.70	5.1	8.51	4.3	4.2	2.32

Table S5. Moisture content (MC), Swelling Index (%W), and Solubility (%WS) of the PreparedFilms.

Films	MXene Content	MC (%)	%WS (%)	%W (%)
CS	0	22.73	11.76	29.55
CMX-0.005	0.005	20.45	8.57	13.33
CMX-0.01	0.01	18.6	5.71	12.64
CMX-0.02	0.02	10.53	5.88	11.69
CMX-0.04	0.04	8.51	2.32	8.51

Table S6. Different properties of films obtained from TGA analysis

	Pure CS	CMX-0.04
Temperature at which 5% weight loss (T _{onset})	65.4	87
Temperature at which 50% weight loss (T_{50})	444	495
Temperature at which maximum weight loss (T _{MAX})	485	524
	Weight loss (%)	
First stage (RT to 210 °C)	10.76%	7.4%
Second stage (210 °C to 410 °C)	36.04%	34.74%
Third stage (above 410 °C)	42.47%	39.56%
Residual char %	7.4%	17.6%