

Supporting information

Advanced ionic liquid technologies for sustainable reaction intensification

Pengzhi Bei^a, Jiayin Zhao^a, Xiaolu Gao^a, Yuning Qi^a, Peng Jia^a, Zehua Cheng^a, Lili Deng^a, Xingtang Xu^b*, Zhenzhong Li^c**

^a*School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, China*

^b*State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, Shanxi, China*

^c*Liaoyang Petrochemical Company, PetroChina Company Limited, Liaoyang 111003, Liaoning, China*

Table S1. Representative Case Studies of Reaction Intensification Using Ionic Liquids: Mechanisms and Performance Metrics

Reaction Type	Specific Example	Ionic Liquid (Function)	Performance Enhancement & Mechanistic Insight	Ref.
Esterification	Acetic acid + Ethanol → Ethyl Acetate	[BMIM][HSO ₄] (Brønsted Acid Catalyst & Solvent)	Rate Enhancement: Superior to conventional acids. Mechanism: Combined acid and phase-transfer functionality.	[1]
Diels-Alder Cycloaddition	Cyclopentadiene + Methyl Acrylate	[BMIM][PF ₆] (Lewis Acid Catalyst & Solvent)	Rate/Selectivity: Drastically accelerated with controlled stereoselectivity Mechanism: Dienophile activation through Lewis acid-carbonyl interaction.	[2]

Reaction Type	Specific Example	Ionic Liquid (Function)	Performance Enhancement & Mechanistic Insight	Ref.
Friedel-Crafts		Chloroaluminate ILs	Selectivity: High for desired products.	
	Isobutane + 2-Butene	(Superacidic Catalyst & Solvent)	Mechanism: Transition-state stabilization in confined environment.	[3]
Alkylation		Palladium Acetate in ILs	Catalyst Stability: Long-term stability with minimal leaching.	
	Iodobenzene + Styrene	(Reaction Medium & Catalyst Stabilizer)	Mechanism: Nanoparticle stabilization and facile separation.	[4]

Reaction Type	Specific Example	Ionic Liquid (Function)	Performance Enhancement & Mechanistic Insight	Ref.
Hydrogenation	Cyclohexene → Cyclohexane	Rhodium Nanoparticles in ILs (Catalyst Dispersion Medium)	Catalyst Reusability: Maintained conversion with facile separation. Mechanism: Dual electrostatic and biphasic stabilization.	[5]
Hydroformylation	1-Octene → Nonanal	Rh/TPPTS Complex in ILs (Catalyst Immobilization Phase)	Selectivity : High linear selectivity and robust stability. Mechanism: Biphasic catalyst confinement.	[6]

References

- 1 T. Huang, H. Qin, R. Wang, H. Cheng, L. Chen and Z. Qi, *J. Chem. Eng. Data*, 2021, **66**, 2764–2772.
- 2 Z. Dou, W. Tang, P. Xie and S. Zhao, *Chin. J. Chem. Eng.*, 2024, **66**, 180–188.
- 3 L. Schilder, S. Maaß and A. Jess, *Ind. Eng. Chem. Res.*, 2013, **52**, 1877–1885.
- 4 M. Taskin, A. Cognigni, R. Zirbs, E. Reimhult and K. Bica, *RSC Adv.*, 2017, **7**, 41144–41151.
- 5 E. Redel, J. Krämer, R. Thomann and C. Janiak, *J. Organomet. Chem.*, 2009, **694**, 1069–1075.
- 6 X. Jin, J. Feng, Q. Ma, H. Song, Q. Liu, B. Xu, M. Zhang, S. Li and S. Yu, *Green Chem.*, 2019, **21**, 3267–3275