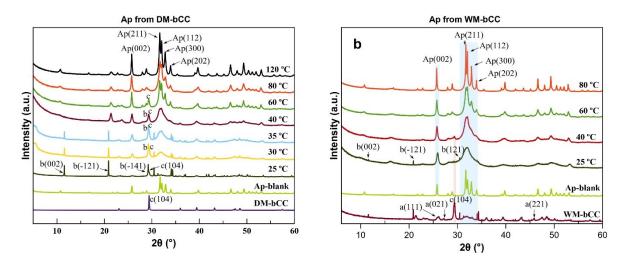
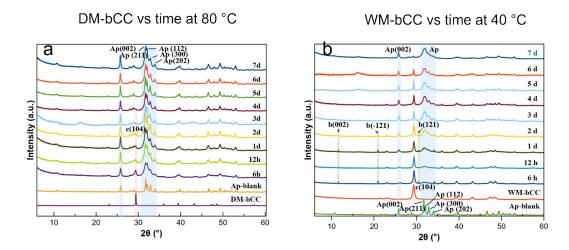
SUPPLEMENTARY INFORMATION

Low-temperature transformation of mechanochemically treated oyster shells into nanocrystalline apatites


Carla Triunfo^a, Francesca Oltolina^b, Annarita D'Urso^b, Raquel Fernández-Penas^c, Giuseppe Falini^a, Antonia Follenzi^b, Jaime Gómez-Morales^{c*}

^aDepartment of Chemistry "Giacomo Ciamician", University of Bologna, via P. Gobetti 85, 40129 Bologna (Italy).


^bDipartimento di Scienze della Salute, Università del Piemonte Orientale, "A. Avogadro" Via Solaroli 17, 28100 Novara (Italy).

^cLaboratorio de Estudios Cristalográficos, IACT-CSIC, Avda. Las Palmeras, nº 4, 18100 Armilla (Spain).

*Corresponding author: jaime.gomez@csic.es (J.G.-M.)

Figure S1. XRD patterns showing the evolution of the transformation of (a) dry-milled bCC (DM-bCC) samples into calcium phosphates at temperatures between 25 °C and 120 °C and (b) of the wet-milled bCC (WM-bCC) samples into calcium phosphates within the temperature range from 25 °C to 80 °C. Ap, b, and c denote apatite, brushite, and calcite, respectively. The Miller indices of the principal reflections are listed after the symbol of each mineral phase.

Figure S2. XRD patterns showing the evolution of the transformation of (a) dry-milled bCC (DM-bCC) samples at 80 °C and (b) of the wet-milled bCC (WM-bCC) samples at 40 °C into calcium phosphates in the time range from 6 h to 7 days. Ap, b, and c denote apatite, brushite, and calcite, respectively. The Miller indices of the principal reflections are listed after the symbol of each mineral phase.