Supporting Information

MXene Derived-TiO₂/β-Ag₂MoO₄ Nanocomposite: A Multifunctional Electrode for Enhanced Energy Storage in Supercapacitors and Lithium-Ion Batteries

Neha D. Panchal and Helen Annal Therese*

Futuristic Energy Storage Technology Lab (FESTL), Department of Chemistry, SRM Institute of

Science and Technology, Kattankulathur, Chennai, 603 203, India

*Corresponding author e-mail: helena@srmist.edu.in

2.5. Physical Characterization

XRD studies were conducted using Cu K α radiation ($\lambda = 1.5406$ Å, 40 kV, 40 mA) in the 20 range of 5-90°. Raman analysis was done by Micro-Raman Spectrometer (LabRAM HR Evolution HORIBA France), using powder samples on a glass substrate. An Oxxius laser of 633 nm wavelength (having a max. power of 100 mW) was used throughout the complete measurement. The morphology and the elemental mapping of the heterostructure were analyzed using high-resolution scanning electron microscopy (HRSEM), Thermo Scientific Apreo instrument operated at an acceleration voltage of 20 kV. Transmission electron microscopy (TEM) images were collected using JEOL Japan, JEM-2100 plus transmission electron microscope operated at an acceleration voltage of 200 kV with the electron source of thermionic LaB₆ single crystal. X-ray photoelectron spectroscopic (XPS) measurements were done with PHI Versaprobe III XPS instrument, and all individual spectra were deconvoluted and fitted using the Shirley-type background function.

Figure S1. XRD pattern of (a) Ti_3AlC_2 , $Ti_3C_2T_x$ and; (b) β -Ag₂MoO₄.

Figure S2. SEM image of (a) $M-TiO_2/\beta-Ag_2MoO_4-1$ and; (b) $M-TiO_2/\beta-Ag_2MoO_4-3$

nanocomposite.

Figure S3. The EDX of M-TiO_2/ β -Ag_2MoO₄-2 nanocomposite.

Table S1. Elemental composition of $Ti_3C_2T_x$, β -Ag₂MoO₄ and M-TiO₂/ β -Ag₂MoO₄-2 nanocomposite.

Materials	Titanium	Silver	Molybdenum	Oxygen	Carbon	Fluorine
	at%	at%	at%	at%	at%	at%
Ti ₃ C ₂ T _x	53.0			6.0	16.0	25.5
β-Ag ₂ MoO ₄		28.6	13.9	57.5		
M-TiO ₂ /β- Ag ₂ MoO ₄ -2	2.1	11.5	6.2	61.7	18.5	

Figure S4. The EDS of M-TiO₂/ β -Ag₂MoO₄-2 nanocomposite.

Figure S5. Survey spectrum of MXene $(Ti_3C_2T_x)$.

Figure S6. XPS of MXene $(Ti_3C_2T_x)$; (a) Ti 2p, (b) C 1s, (c) O 1s, (d) F 1s.

Figure S7. (a, c) CV curves at various scan rate and; (b, d) GCD profiles at different current density of $Ti_3C_2T_x$ and β -Ag₂MoO₄.

Figure S8. (a, c) CV curves at various scan rate and; (b, d) GCD profiles at different current density of $M-TiO_2/\beta-Ag_2MoO_4-1$ and $M-TiO_2/\beta-Ag_2MoO_4-3$ nanocomposite.

Figure S9. The calculated specific capacitance in three electrode configurations for various active electrode materials at 100 mV s⁻¹ and 1 A g⁻¹.

 Table S2. The calculated specific capacitance in three electrode configurations for various active electrode materials.

Materials	Specific capacitance (F g ⁻¹)			
materials	by CV @100 mV s ⁻¹	by GCD @ 1 А g ⁻¹		
Ti ₃ C ₂ T _x	11.8	12.1		
β-Ag ₂ MoO ₄	100.8	266.6		
M-TiO ₂ /β-Ag ₂ MoO ₄ -1	151.4	380.0		
M-TiO ₂ /β-Ag ₂ MoO ₄ -2	255.8	2599		
M-TiO ₂ /β-Ag ₂ MoO ₄ -3	195.4	666.2		

Figure S10. (a) Nyquist plots of all nanocomposites; (b) Experimental and fitted EIS curve for M-TiO₂/ β -Ag₂MoO₄-2 electrode; (c) Plot of Z' versus reciprocal square root of frequency ($\omega^{-1/2}$).

Table S3. The transport properties of various electrodes were obtained from simulated impedance spectra in Fig. (5f)

Electrode	$R_{s}(\Omega)$	$R_{ct}(\Omega)$	$\sigma = (\Omega \ s^{-1/2})$	C _{ad} (mF)
Ti ₃ C ₂ T _x	14.4	113.8	3.93	5.6
β -Ag ₂ MoO ₄	31.8	119.2	18.33	1.7
$M-TiO_2/\beta-Ag_2MoO_4-1$	28.1	116.8	31.13	0.07
M-TiO ₂ /β-Ag ₂ MoO ₄ -2	16.4	82.3	3.73	0.03
M-TiO ₂ /β-Ag ₂ MoO ₄ -3	13.8	99.1	9.76	0.05

Table S4. The calculated specific capacitance of $M-TiO_2/\beta-Ag_2MoO_4-2$ electrode material under the three-electrode configuration.

	Specific Capacitance (F g ⁻¹)			
Cycles No.	by CV @ 100 mV s ⁻¹	by GCD @ 1 A g ⁻¹		
0k	255.8	2599		
5k	198.5	2600		
10k	208.7	2584		
15k	209.8	2626		
20k	204.7	2614		
25k	195.5	2565		

Figure S11. Plot of i/(scan rate, ν)^{0.5} against ν ^{0.5} for the cathodic sweeps under an alkaline medium to evaluate the value of k₁ and k₂ in the equation 12 and 13.

v	V ^{1/2}	i	k1	k ₂	k ₁ v	k ₂ v ^{1/2}	$k_1 v + k_2 v^{1/2}$	$k_1 v/i(v) =$ $k_1 v+k_2 v^{1/2} * 100$	$k_2 v/i(v) = k_1 v + k_2 v^{1/2} * 100 - 100$	Toal capacity	k ₁ v % (Fg ⁻¹)	k ₂ v ^{1/2} % (Fg ⁻¹)
10	3.162	0.86	0.0135	0.311	0.135	0.983382	1.118382	12.07100973	87.92899027	1218	146	1072
20	4.472	1.12	0.0135	0.311	0.27	1.390792	1.660792	16.25730374	83.74269626	811	130	681
50	7.071	1.54	0.0135	0.311	0.675	2.199081	2.874081	23.48576815	76.51423185	439	101	339
70	8.366	1.67	0.0135	0.311	0.945	2.601826	3.546826	26.64353989	73.35646011	343	92	251
100	10	1.74	0.0135	0.311	1.35	3.11	4.46	30.2690583	69.7309417	178	77	178

Table S5. The capacitive and diffusion contribution was calculated by the Dunn Method

Figure S12. GCD curves at 1 A g⁻¹ up to 10,000 cycles.

Table S6. The calculated specific capacitance on GCD curve of the as-fabricated symmetric

 coin cell supercapacitor throughout the stability performance.

Cycles No	Specific Capacitance (F g ⁻¹)
Cycles I to.	by GCD @ 1 A g ⁻¹
1k	292.8
2k	285.0
3k	297.2
4k	283.4
5k	295.7
6k	290.2
7k	310.2
8k	309.0
9k	305.2
10k	290.4

Figure S13. (a, c) CV of the MXene, β -Ag₂MoO₄ at 0.2 mV s⁻¹ scan rate; (b, d) GCD curves of MXene, β -Ag₂MoO₄ at current density of 100 mA g⁻¹.

Figure S14. (a, c) CV of the M-TiO₂/ β -Ag₂MoO₄-1 and M-TiO₂/ β -Ag₂MoO₄-3 at 0.2 mV s⁻¹ scan rate; (b, d) GCD curves of M-TiO₂/ β -Ag₂MoO₄-1 and M-TiO₂/ β -Ag₂MoO₄-3 at current density of 100 mA g⁻¹.

Figure S15. (a) EIS curve for MXene, β -Ag₂MoO₄ and all synthesized nanocomposites in the 0.1 Hz to 10 kHz frequency range. (b) Nyquist plot of after and before cycling stability of M-TiO₂/ β -Ag₂MoO₄-2 nanocomposite.

Figure S16. Galvanostatic intermittent titration technique (GITT) study of the M-TiO₂/ β -Ag₂MoO₄-2 working electrode.

Figure S17. (a, b) HRSEM cross-section morphology of M-TiO₂/ β -Ag₂MoO₄-2 working electrode after 100 cycles charge-discharge curve.

Table S7. The comparative electrochemical performance of the MXene and binary metal oxide

 based electrode material for supercapacitor.

	Prenaration	Electrolyte	Specific Ca	pacitance	Cycling	Cycling	Ref.
Materials	Method	[Mol L ⁻¹]	Electrode 3E (a)	Device 2E (b)	Stability 3E (a)	Stability 2E (b)	
NiCo ₂ O ₄ @ Fe ₂ O ₃	Hydrothermal & Calcination	1.0 M Na ₂ SO ₄	262 mF cm ⁻² at 1 mA cm ⁻²		74.2 % @4000		1

NiO/ NiMoO4	Reflux & Calcination	6.0 M KOH	1624.5 F g ⁻¹ at 1.0 A g ⁻¹		73.5 % @2200		2
NiCo ₂ O ₄ @ rGO/ACF	Hydrothermal & Calcination	3 M KOH	1338 mF cm ⁻² at 3 mA cm ⁻²		88.2 % @10 000		3
$\frac{\text{NiMoO}_4}{\text{Ti}_3\text{C}_2\text{T}_x\text{-}10}$	Annealing	3 M KOH	483.8 C g ⁻¹ at 1.0 A g ⁻¹		68.0 % @10 000		4
NiZnCoO ₄ / CoWO ₄ -10	Hydrothermal & Calcination	2 M KOH	370.9 F g ⁻¹ at 0.5 A g ⁻¹		90 % @500		5
MnCo ₂ O _{4.5} @NiCo ₂ O ₄	Hydrothermal & Calcination	3 M KOH	325 F g ⁻¹ at 1 A g ⁻¹		70.5 % @ 3000		6
ZnFe ₂ O ₄ - rGO	Hydrothermal	2 M KOH	1419 F g ⁻¹ at 100 mV s ⁻¹	101 F g ⁻¹ at 0.5 A g ⁻¹	93 % @5000	90.1 % @5000	7
$\frac{Ti_3C_2T_x/M}{nCo_2O_4}$	Hydrothermal & Calcination	1 M KOH	806.6 F g ⁻¹ at 1 A g ⁻¹		77 % @3000		8
MoO ₃ /Ti ₃ C ₂ T _x	Hydrothermal	1 M KOH	151 F g ⁻¹ at 2 mV s ⁻¹		93.7 % @8000		9
$\frac{Ti_3C_2T_x/\alpha}{MoO_3}$	Hydrothermal	1 M Na ₂ SO ₄	371 C g ⁻¹ at 1.0 A g ⁻¹		89.5 % @6000		10
β- Ag ₂ MoO ₄	Rapid wet chemical method	2 M KOH	2610 C g ⁻¹ at 1 A g ⁻¹		82 % @5000		11
Ti ₃ C ₂ T _x /Ag ₂ CrO ₄	co- precipitation method	0.1M H ₂ SO ₄	525 F g ⁻¹ at 10 mV s ⁻¹				12
$\begin{array}{c} Ti_3C_2T_x\\/CuCr_2O_4\end{array}$	co- precipitation method	0.1M H ₂ SO ₄	445.5 F g ⁻¹ at 20 mV s ⁻¹				13
M-TiO ₂ /β- Ag ₂ MoO ₄ - 2	Reflux method	0.1 M KOH	2599 F g ⁻¹ at 1 A g ⁻¹	309 F g ⁻¹ at 1 A g ⁻¹	98.7 % @25000	95.1 % @10000	This Work

Table S8. The comparative electrochemical performance of the MXene and binary metal oxide

 based electrode material for Lithium-ion Battery.

Materials	Preparation Method	Initial discharge capacity (mA hg ⁻¹)	Capacity (mA hg ⁻¹)/ Cycles (times) @ current density mA g ⁻¹	Ref.
C-Li ₂ MoO ₄ nanotube	Sol-gel method	$\sim 650 \text{ mA hg}^{-1}$	$\sim 550 \text{ mA hg}^{-1}/23@90 \text{ mA g}^{-1}$	14

MoO ₃ /C	Electro- spinning	1550 mA hg ⁻¹	710 mA hg ⁻¹ /100 @40 mA g ⁻¹	15
h-MoO ₃	Reflux	1869 mA hg ⁻¹	619 mA hg ⁻¹ /100@C/15	16
C-coated α- Na ₂ MoO ₄ nanoplate	Sol-gel method	806 mA hg ⁻¹	320 mA hg ⁻¹ /50@30 mA g ⁻¹	17
MXene/Ag	Conventional method	550 mA hg ⁻¹	310 mA hg ⁻¹ /800@1C	18
M-TiO ₂ /β- Ag ₂ MoO ₄ -2	Reflux method	1013 mA hg ⁻¹	335 mA hg ⁻¹ /100@100 mA g ⁻¹	This work

 Table S9. The transport properties of various electrodes were obtained from impedance spectra

 in Fig S15.(a)

Electrode	$R_{s}(\Omega)$	$R_{ct}(\Omega)$
$Ti_{3}C_{2}T_{x}$	12.1	36.0
β -Ag ₂ MoO ₄	20.6	73.5
M-TiO ₂ /β-Ag ₂ MoO ₄ -1	13.5	60.4
M-TiO ₂ /β-Ag ₂ MoO ₄ -2	15.1	47.9
M-TiO ₂ /β-Ag ₂ MoO ₄ -3	16.1	68.6

References

- 1 K. Zhang, Z. Cen, F. Yang and K. Xu, *Prog. Nat. Sci. Mater. Int.*, 2021, **31**, 19–24.
- 2 A. S. Keshari and P. Dubey, *Dalt. Trans.*, 2022, **51**, 3992–4009.
- A. M. Patil, N. Kitiphatpiboon, X. An, X. Hao, S. Li, X. Hao, A. Abudula and G. Guan, *ACS Appl. Mater. Interfaces*, 2020, **12**, 52749–52762.
- 4 Y. Wang, J. Sun, X. Qian, Y. Zhang, L. Yu, R. Niu, H. Zhao and J. Zhu, *J. Power Sources*, 2019, **414**, 540–546.

- 5 R. R. Neiber, J. Kumar, R. A. Soomro, S. Karkus, H. M. Abo-Dief, A. K. Alanazi, A. A. Altalhia and Z. M. El-Bahy, *J. Energy Storage*, 2022, **52**, 104900.
- 6 W. C. Huo, X. L. Liu, Y. S. Yuan, N. Li, T. Lan, X. Y. Liu and Y. X. Zhang, *Front. Chem.*, 2019, 7, 1–9.
- M. B. Askari, P. Salarizadeh, M. Seifi, M. H. Ramezan zadeh and A. Di Bartolomeo, J. Alloys Compd., 2021, 860, 158497.
- Q. Xia, W. Cao, F. Xu, Y. Liu, W. Zhao, N. Chen and G. Du, *J. Energy Storage*, 2022, 47, 103906.
- 9 J. Zhu, X. Lu and L. Wang, *RSC Adv.*, 2016, **6**, 98506–98513.
- 10 Z. Pan, C. Yang, Y. Li, X. Hu and X. Ji, *Chem. Eng. J.*, 2022, **428**, 131138.
- J. J. William, S. Balakrishnan, M. Murugesan, M. Gopalan, A. J. Britten and M. Mkandawire, *Mater. Adv.*, 2022, 3, 8288–8297.
- 12 T. Yaqoob, M. Rani, A. Mahmood, R. Shafique, S. Khan, N. K. Janjua, A. A. Shah, A. Ahmad and A. A. Al-Kahtani, Materials, 2021, **14**, 6008.
- R. Shafique, M. Rani, K. Batool, A. A. Alothman, M. S. Saleh Mushab, A. A. Shah, A. Kanwal, S. Ali and M. Arshad, *J. Mater. Res. Technol.*, 2023, 24, 2668–2677.
- X. Liu, Y. Lyu, Z. Zhang, H. Li, Y. S. Hu, Z. Wang, Y. Zhao, Q. Kuang, Y. Dong, Z. Liang, Q. Fan and L. Chen, *Nanoscale*, 2014, 6, 13660–13667.
- 15 C. Feng, H. Gao, C. Zhang, Z. Guo and H. Liu, *Electrochim. Acta*, 2013, **93**, 101–106.
- Udayabhanu, V. Pavitra, M. Shivanna, F. A. Alharthi, B. M. Praveen, Y. T. Ravikiran, K.
 Byrappa and G. Nagaraju, *Int. J. Energy Res.*, 2021, 45, 17315–17326.
- 17 X. Liu, Y. Zhao, Y. Dong, Q. Kuang, Z. Liang, X. Lin, D. Yan and H. Liu, *Electrochim. Acta*, 2015, **154**, 94–101.
- 18 G. Zou, Z. Zhang, J. Guo, B. Liu, Q. Zhang, C. Fernandez and Q. Peng, ACS Appl. Mater. Interfaces, 2016, 8, 22280–22286.