Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2025

Progress on polymer-based materials and composites for humidity sensors applications: Materials aspects to

sensor performances

Kartik Ajit Pasalwad¹, Nimisha Baby¹, Edjenguele Adolphe^{1,2}, S. Sadhasivam¹, Gowthami Palanisamy¹, Sahil S Magdum¹,

Sadhasivam Thangarasu^{1,*}, Tae Hwan Oh^{1,*}

¹ School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea

² Section of postharvest technology, Ekona research centre, Institute of Agricultural Research for Development (IRAD), P.M.B: 25 Buea,

Cameroon

Main - Corresponding author: taehwanoh@ynu.ac.kr (Tae-Hwan Oh)

Co-Corresponding author: sadhasivam.nano@gmail.com (Sadhasivam Thangarasu)

Types of sensor	Working Mechanism	Advantage	Disadvantage	
Resistance based	It operates on the principle of the Grotthus chain	i) It has a wide resistance variationii) High sensitivity and significant conductance	i) Senor perfor hydrophilic pro	mance depends on the perties of a material
reaction feedbac resistan	reaction and provides feedback in terms of resistance [1] [2]	which enhances humidity detection accuracy iii) Fast response and recovery time	ii) There could by relative humiding	be low sensitivity at lower ty and mechanical instability at
		iv) At high humidity charge carrier mobility i enhanced	iii) At a specific h show a nonlinea	umidity based on material umidity range, the sensor can ar response, which could affect
		v) It can be customized and scalable [2]	sensing accurac	zy [2]
Capacitance based	Its process is identical to that of a resistance-based humidity sensor; however, it responds in terms of capacitance [3]	 i) High sensitivity ii) Adaptable structural design iii) The extensive surface area improves sensing 	i) This sensor specifically. diminishes complicating	depends on frequency The capacitance value as frequency increases, readings.
		iv) Has rapid response and recovery time	ii) Exhibits com sensor layer.	plexity in the design of the
		v) Exhibits a clear correlation with humidity [2	iii) Alterations in impact sensor	n ambient conditions may performance.
			iv) Performance of	of sensor depends on material
			v) Required high sensor [2]	a cost for advanced design of

Table S1. Categorization of humidity sensor based on working mechanism, advantages and disadvantages.

Impedance based	This also pertains to the proton leaping process, wherein variations in relative humidity and frequency result in alterations in impedance [4] [5]	i) ii) iii) iv)	Sensitivity is contingent upon frequency. So, enhanced sensitivity occurs with lower humidity levels.Stable and reliable outputIt typically demands minimal power consumption.It can function throughout a wide frequency spectrum [2]	i) ii) iii) iv)	Demand meticulous frequency optimization for precise outcomes. At elevated frequencies, sensitivity diminishes due to the inability of water molecule polarization to synchronize with variations in the electric field. Performance depends on sensing material Impedance may be affected by environmental conditions, which can result in measurement mistakes [2]
Voltage based	It operates on the Grotthus reaction; nevertheless, it does not need a continuous power supply. When humidity interacts with active material, it generates an electric current [2]	 i) ii) iii) iv) v) 	It is self powered sensor It is environmentally sustainable and features a design conducive to prolonged usage. Enhancements in sensor performance can be achieved by alterations in surface structure. The energy produced by the sensor is adequate to power low-energy gadgets. It has a compact design [2]	i) ii) iii)	Low power output Environmental dependence Only small-scale applications are better suited for this technology [2]

Optical intensity based It detects humidit detecting changes i refractive index transmitted light int resulting from absorption by a s material [6] [7]	It detects humidity by detecting changes in the refractive index or transmitted light intensity	y i) e ii) y iii) r r iv)	Extremely sensitive to humidity	i)	Has a sophisticated design
			Fast response time The sensor is perfect for environments with a	ii)	Has a temperature sensitivity, which may impact the ability to sense humidity.
	resulting from water absorption by a sensor		lot of electrical noise since it is impervious to electromagnetic interference.	iii)	Is more expensive to fabricate than other sensors.
	material [6] [7]		These sensors are lightweight and compact. [6]	iv)	Mechanical stress and extreme environmental conditions may harm a sensor [6]
Frequency (Gravimetric) based	It detects humidity by measuring frequency shifts resulting from mass changes in a moisture- absorbing sensor material, utilizing Quartz Crystal Microbalance (QCM) or Surface Acoustic Waves (SAW) technology [7]	 i) High sensitivity towards humidity ii) Quick reaction and time to recovery iii) Have a comparatively simple experimental setup to test humidity. [7] 	i)	Temperature changes may impact humidity sensing since the sensor is temperature sensitive.	
			Have a comparatively simple experimental setup to test humidity. [7]	ii)	The adsorption sensing layer influences the sensors performance
				iii)	More substantial than other sensors [7]
Resonant	It detects humidity by	i)	Applications for wireless (remote) sensing	i)	Has complex design.
(Magnetoelastic) frequency based	measuring the resonant frequency changes resulting from mass alterations as the sensor material absorbs moisture	ii)	may make advantage of it. Extremely sensitive to moisture	ii)	An external electromagnetic field may have an impact on the sensor.
		iii)	The sensor is based on non-contact. For example, it uses a magnetic field to measure	iii) iv)	The cost of this sensor technology is high.
		hum	humidity, so it doesn't need physical touch	10)	Gver time, the moisture-sensitive layer may

[7]	[7]		deteriorate, affecting the sensors long-term
			accuracy and stability.
		v)	Responds more slowly [7]

Figure S1. Historical development of polymer based humidity sensor

- PEDOT:F (Fluorinated)
- Poly(1-allyl-3-vinylimidazolium bromide)
- POPS
- Chitosan
- PEO+PVA
- PIL + PBI
- PETMP + DVB + DMPA
- SA + PAN
- PVA + PAN

Polymer based composites

- PVA+ poly (lactic-co-glycolic acid) hyaluro nic acid + MgSO4
- Cellulose acetate-RGO
- PANI-Graphite@PU
- Chitosan-GO
- Cellulose acetate-CNT
- Chitosan-NaCl
- PANI + GO
- SA + NaCl
- $SA + Ti_3C_2T_X$
- PAN + MIL-100

MOF and COF based

- Eu(BTC)]-MOF
- Lu-HHTP
- Zr free-base porphyrin MOFs
- $COF_{MOP-TAPB}$ (M₁₀A₂₀-COF/IDE₄₀₀/PDMS)

References

- [1] D. Zhang, Z. Xu, Z. Yang, X. Song, High-performance flexible self-powered tin disulfide nanoflowers/reduced graphene oxide nanohybridbased humidity sensor driven by triboelectric nanogenerator, Nano Energy, 67 (2020) 104251.
- [2] Y. Lu, G. Yang, Y. Shen, H. Yang, K. Xu, Multifunctional flexible humidity sensor systems towards noncontact wearable electronics, Nano-Micro Letters, 14 (2022) 150.
- [3] H. Yu, J.-G. Liang, C. Wang, C.-C. Liu, B. Bai, F.-Y. Meng, D.-Q. Zou, L. Ali, C.-Q. Jing, M. Zhao, Target properties optimization on capacitive-type humidity sensor: Ingredients hybrid and integrated passive devices fabrication, Sensors and Actuators B: Chemical, 340 (2021) 129883.
- [4] Y. Zhang, Z. Duan, H. Zou, M. Ma, Drawn a facile sensor: A fast response humidity sensor based on pencil-trace, Sensors and Actuators B: Chemical, 261 (2018) 345-353.
- [5] D. Zhang, X. Zong, Z. Wu, Y. Zhang, Ultrahigh-performance impedance humidity sensor based on layer-by-layer self-assembled tin disulfide/titanium dioxide nanohybrid film, Sensors and Actuators B: Chemical, 266 (2018) 52-62.
- [6] A. Kapic, A. Tsirou, P.G. Verdini, S. Carrara, Humidity sensors for high energy physics applications: A review, IEEE Sensors Journal, 20 (2020) 10335-10344.
- [7] C.-Y. Lee, G.-B. Lee, Humidity sensors: a review, Sensor Letters, 3 (2005) 1-15.