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Section 1. The heating procedures for Preparation of samples RCMS-x

Figure S1. The heating procedures for Preparation of samples RCMS-x

Figure S1 presents a flow chart illustrating the preparation process of granular carbon 

molecular sieves (RCMS) from rice grains. First, 1 g of rice grains was placed in a tube furnace, 

which was then programmed to heat to the desired temperatures, following the prescribed 

heating procedures. Figure S1 shows the heating procedures, which were as follows: After the 

rice grains were placed in a tube furnace, they were heated to 200-250℃ at a rate of 5℃/min 

for slow removal of water under a nitrogen atmosphere, lasting 1 hour. Next, the furnace was 

heated to 300 ℃ at the same heating rate of 5℃/min for pyrolysis, lasting 1 hour under nitrogen. 

After that, the temperature was increased to the desired values (700, 800, 900, or 1000 ℃) at a 

rate of 5℃/min for further pyrolysis and carbonization, lasting 1 hour under nitrogen 

atmosphere. Finally, these samples were cooled to room temperature in the N2 atmosphere. The 

resulting RCMS samples were marked as RCMS-x, where X represents the given carbonization 

temperature at which the sample was prepared.



Section 2 The breakthrough experiment setup. 

Figure S2. The breakthrough experiment setup

Section 3 Surface morphology and textural parameters of RCMS-x 

Figure S3. SEM of the samples: (a) rice, (b) RC250, (c) RCMS-800.

Figure S3 present the SEM image of rice, RC250 and RCMS-800. The sample exhibits rough 

surface and irregular macropores after elevated temperature radiation. This is attributed to some 

functional group decomposition, and subsequent escape of resulting volatile gases as well as 

water evaporation. 



Table S1 The pore parameters of RCMS-x calculated by CO2 isotherm at 195 K

Sample SBET(m2/g) Vmicro(cm3/g)

RCMS-700 246.65 0.140

RCMS-800 264.45 0.149

RCMS-900 236.14 0.134

RCMS-1000 210.01 0.126

Section 4. Kinetic diffusion coefficient of C3H6 and C3H8 on RCMS-x.
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Figure S4. Kinetics curves of C3H6 and C3H8 adsorption on the samples RCMS-x at 308 K and 0.5 bar

Figure S4 presents adsorption kinetic curves of C3H6 and C3H8 on RCMS-x. According to the 

kinetic curves, diffusional time constants (D/r2) for C3H6 and C3H8 can be calculated on the 

basis of following micropore diffusion model 1-4:

𝑞𝑡
𝑞𝑒
≈
6
𝜋

𝐷𝑡

𝑟2
(
𝑞𝑡
𝑞𝑒
< 0.3)

Where t is the adsorption time, min; qt is transient uptakes at time t, mmol/g; qe is the 

equilibrium adsorption amount of the adsorbent, mmol/g；D is the diffusivity, and r is the 

radius of the equivalent spherical sectional.

The relationship between qt/qe and  was plotted based on the kinetic curves, revealing a 𝑡

straight line with a slope of , as depicted in Figure S4. Then, the diffusion time constant 
6
𝜋

𝐷

𝑟2

D/r2 can be determined from the slope of the straight lines. Table S2 lists the diffusion time 

constant D/r2 of C3H6 and C3H8 on and the kinetic selectivity of three samples for C3H6 and 

C3H8. 



0.9 1.0 1.1 1.2 1.3 1.4
0.09

0.12

0.15

0.18

0.21  C3H6

 C3H6-Fitting

q t
/q

e

Sqrt time (min-1)

RCMS-700-C3H6

qt/qe=0.27312×t1/2

R2=0.999
D/r2=6.51×10-3 min-1

4.4 4.8 5.2 5.6 6.0 6.4
0.09

0.12

0.15

0.18

0.21  C3H8

 C3H8-Fitting

q t
/q

e

Sqrt time (min-1)

RCMS-700-C3H8

qt/qe=0.06608×t1/2

R2=0.992
D/r2=3.80×10-4 min-1

1.6 1.8 2.0 2.2 2.4 2.6
0.09

0.12

0.15

0.18

0.21  C3H6

 C3H6-Fitting

q t
/q

e

Sqrt time (min-1)

RCMS-800-C3H6

qt/qe=0.1286×t1/2

R2=0.998
D/r2=1.44×10-3 min-1

0.9 1.0 1.1 1.2 1.3 1.4 1.5
0.09

0.12

0.15

0.18

0.21  C3H6

 C3H6-Fitting

q t
/q

e

Sqrt time (min-1)

RCMS-900-C3H6

qt/qe=0.22919×t1/2

R2=0.999
D/r2=4.58×10-3 min-1

2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8
0.09

0.12

0.15

0.18

0.21  C3H6

 C3H6-Fitting

q t
/q

e

Sqrt time (min-1)

RCMS-900-C3H8

qt/qe=0.08168×t1/2

R2=0.997
D/r2=5.82×10-4 min-1

Figure S5. Plot of the fractional uptake (qt/qe) against the square root of adsorption time at 0.5 bar for 

C3H6 and C3H8 adsorption on the samples RCMS-x



Table S2 lists the diffusion time constant D/r2 of C3H6 and C3H8 on and the kinetic selectivity 

of three samples for C3H6 and C3H8. 

Table S2. The diffusional time constant and kinetic selectivity of RCMS-x.

Sample D/r2(C3H6) D/r2(C3H8) Selectivity

RCMS-700 6.51 × 10 ‒ 3 3.80 × 10 ‒ 4 17.13

RCMS-800 1.44 × 10 ‒ 3 —— ∞

RCMS-900 4.58 × 10 ‒ 3 5.82 × 10 ‒ 4 7.87

Section 5. Isotherms of C3H6 on RCMS-800 at different temperatures
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Figure S6. C3H6 isotherms of RCMS-800 at different temperatures
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Figure S7. Isosteric heat of C3H6 adsorption on RCMS-800

Section 6 Breakthrough curves of C3H6 and C3H8 mixture in the fixed bed of 

RCMS-x
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Figure S8. Breakthrough curves of C3H6 and C3H8 mixture (v/v=50/50) through the fixed bed packed 

with RCMS-x at 298 K and normal pressure.

Figure S8 shows Breakthrough curves of C3H6 and C3H8 mixture (v/v=50/50) through the fixed 

bed packed with RCMS-x at 298 K and normal pressure
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