ZIF-derived CoS@CN with a hollow cage structure for improved electrochemical nitrate reduction to synthesize ammonia

Yanli Zhang,^a Jiuqing Xiong,^a Xuyang Wang,^a Ming Li,^{*a} Shihai Yan,^{*a} Bingping Liu^{*a}

^a College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao,

266109, China

Corresponding author:

Ming Li, E-mail: <u>liming0414@qau.edu.cn</u>; QAU, Qingdao, 266109, China Shihai Yan, email: <u>shyan@qau.edu.cn</u>; QAU, Qingdao, 266109, China Bingping Liu, email: <u>bpliu@qau.edu.cn</u>; QAU, Qingdao, 266109, China

Contents:

Supplementary Figure 1	2
Supplementary Figure 2	2
Supplementary Figure 3	3
Supplementary Figure 4	3
Supplementary Figure 5	3
Supplementary Figure 6	4
Supplementary Figure 7	4
Supplementary Figure 8	4
Supplementary Figure 9	5
Supplementary Figure 10	5
Supplementary Figure 11	5
Supplementary Figure 12	6
Supplementary Figure 13	6
Supplementary Figure 14	7
Supplementary Figure 15	7
Supplementary Figure 16	8
Supplementary Table 1	9
Supplementary Table 2	9
Reference	10

Supplementary Figure 1. SEM of (a) CoS@NC-1, (b) CoS@NC-2, (c) CoS@NC-3, (d) CoS@NC-4, and (e) CoS@NC-5 at 500 °C, (f) CoS@NC-100, (g) CoS@NC-200, (h) CoS@NC-300, and (i) CoS@NC-400 for 3h.

Supplementary Figure 2. (a) TEM and (b) SEM of Co@NC.

Supplementary Figure 3. The total spectrum of the distribution map in EDS of CoS@CN-300.

Supplementary Figure 4. XRD patterns of CoS@CN-x/y ($x = 1 \sim 5$; $y = 100 \sim 500$).

Supplementary Figure 5. The High-Resolution Transmission Electron Microscopy of CoS@CN-300.

Supplementary Figure 6. LSV of CoS and CoS@CN-300 with and without 0.1 M NO₃⁻.

Supplementary Figure 7. (a) UV-vis absorption spectra of various NH₃ concentrations after incubated for 2 h under room temperature and (b) Calibration curve used for estimation of NH₃ concentration.

Supplementary Figure 8. (a) UV-vis absorption spectra of various NO_2^- concentrations and (b) Calibration curve used for estimation of NO_2^- concentration.

Supplementary Figure 9. (a) UV-vis absorption spectra of various N_2H_4 concentrations and (b) Calibration curve used for estimation of N_2H_4 concentration.

Supplementary Figure 10. The comparison (a) FE of NO_2^- and NH_3 . (b) UV-vis absorption spectra of detecting N_2H_4 in eNO₃RR.

Supplementary Figure 11. The comparison of (a) NH₃ yield and (b) UV-vis absorption spectra of CoS@CN-300, OCP, and Blank were testing at -0.35 V *vs*. RHE.

Supplementary Figure 12. The current density and UV-vis absorption spectra of seven alternating cycle tests were accomplished at -0.35 V *vs*. RHE.

Supplementary Figure 13. The current density and UV-vis absorption spectra of ten cycle tests were accomplished at -0.35 V *vs*. RHE.

Supplementary Figure 14. SEM (a-c) images of carbon paper and CoS@CN-300, XRD (d) pattern of CoS@CN-300, and XPS (e-h) after eNO_3RR tests.

Supplementary Figure 15. The structure of Co⁰S@CN, CoS@CN and Co@CN.

Supplementary Figure 16. The process of NO₃RR on (a) $Co^0S@CN$, (b) CoS@CN and (c) Co@CN.

Sample	Specific surface area (m ² g ⁻¹)	Average pore diameter	Pore volume $(cm^3 g^{-1})$	
Co@CN-300	1243.48	2.37	0.73	
CoS@CN-300	115.83	14.25	0.41	

Table S1. Comparison of catalytic performances for CoS@CN-300 with other reported eNO_3RR electrocatalysts.

Table S2. Comparison of catalytic performances for CoS@CN-300 with other reported eNO_3RR electrocatalysts.

Catalyst	Electrolyte	Highest FE	Highest NH ₃ Yield rate	te Ref.	
Cucuryse	Licensiyee	@ potential	@ potential	Ren	
CoS@CN-300	0.1 M NaOH with	97.88% @ -0.35	4.74 mg h ⁻¹ mg _{cat} ⁻¹		
	200 ppm NO3 ⁻	V vs. RHE	@ -0.75 V vs. RHE	T IIIS WORK	
CoS@CN-300	0.1 M NaOH with	97.88% @ -0.35	80.58 mmol mg h ⁻¹ cm ⁻²	Th:	
	200 ppm NO ₃ -	V vs. RHE	@ -0.75 V vs. RHE	This work	
Pb/BC2N	0.1 M KOH with	97.42%@-0.3	1.73 mg h ⁻¹ cm ⁻²	[1]	
	250 mM NO3 ⁻	V vs. RHE	@ -0.75 V vs. RHE		
FeCo ₂ O ₄	0.1 M KOH with	95.9% @ -0.5 V	$4.988 \ mg \ h^{-1} \ mg_{cat}{}^{-1}$	[2]	
	20 mM NO3 ⁻	vs. RHE	@ -0.5 V vs. RHE		
ZnCo ₂ O ₄	0.1 M Na ₂ SO ₄ with	*	$2.1 \text{ mg h}^{-1} \text{ mg}_{\text{cat}}^{-1}$	[3]	
	100 ppm NO ₃ -		@ -0.64 V vs. RHE		
Cu@NF	1 M KOH with	96.6% @ -0.23	0.252 mmol h ⁻¹ cm ⁻²	[4]	
	200 ppm NO ₃ -	V vs. RHE	@ -0.23 V vs. RHE		
Ru@C3N4/Cu	0.1 M KOH with	91.3% @ -0.8 V	0.249 mmol h ⁻¹ cm ⁻²	[5]	
	1400 ppm NO ₃ -	vs. RHE	@ -0.9 V vs. RHE		
Co ₃ O ₄ /Co	0.1 M NaOH with	88.7% @ -0.8 V	260.5 µmol h ⁻¹ cm ⁻²	[6]	
	1000 ppm NO ₃ -	vs. RHE	@ -0.8 V vs. RHE		
O-Cu-PTCDA	0.1 M NaOH with	85.9% @ -0.4 V	25.65 µmol h ⁻¹ cm ⁻²	[7]	
	500 ppm NO ₃ -	vs. RHE	@ -0.4 V vs. RHE		
NiFe2O4/CC	0.1 M PBS with	96.6% @ -0.6 V	623.5 µmol h ⁻¹ cm ⁻²	[8]	
	0.1 M NO ₃ -	vs. RHE	@ -1.0 V vs. RHE		
CoFeLDH	0.1 M KOH with	97.68% @ -0.45	0.93 mmol h ⁻¹ cm ⁻²	[0]	
	1400 ppm NO ₃ -	V vs. RHE	@ -0.45 V vs. RHE	[ל]	
Co-P/TP	0.2 M Na ₂ SO ₄ with	95.9% @ -0.3 V	24.47±0.42 μmol h ⁻¹ cm ⁻²	[10]	
	200 ppm NO ₃	vs. RHE	@ -0.6 V vs. RHE	[10]	

Reference

[1] X. Li, X. Zhao, Y. Zhou, J. Hu, H. Zhang, X. Hu, G. Hu, Pd nanocrystals embedded in BC2N for efficient electrochemical conversion of nitrate to ammonia, Applied Surface Science 584 (2022) 152556. https://doi.org/10.1016/j.apsusc.2022.152556.

[2] J. Li, D. Zhao, L. Zhang, L. Yue, Y. Luo, Q. Liu, N. Li, A.A. Alshehri, M.S. Hamdy, Q. Lib, X. Suna, A FeCo₂O₄ nanowire array enabled electrochemical nitrate conversion to ammonia, Chem Commun (Camb) 58(28) (2022) 4480-4483. <u>https://doi.org/10.1039/d2cc00189f</u>.

[3] P. Huang, T. Fan, X. Ma, J. Zhang, Y. Zhang, Z. Chen, X. Yi, 3D Flower-Like Zinc Cobalitie for Electrocatalytic Reduction of Nitrate to Ammonia under Ambient Conditions, ChemSusChem 15(4) (2022) e202102049. <u>https://doi.org/10.1002/cssc.202102049</u>.

[4] J. Li, J. Gao, T. Feng, H. Zhang, D. Liu, C. Zhang, S. Huang, C. Wang, F. Du, C. Li, C. Guo, Effect of supporting matrixes on performance of copper catalysts in electrochemical nitrate reduction to ammonia, Journal of Power Sources 511 (2021) 230463. <u>https://doi.org/10.1016/j.jpowsour.2021.230463</u>.
[5] Y. Zheng, M. Qin, X. Yu, H. Yao, W. Zhang, G. Xie, X. Guo, Constructing Ru@C(3) N(4) /Cu Tandem Electrocatalyst with Dual-Active Sites for Enhanced Nitrate Electroreduction to Ammonia, Small (2023) e2302266. <u>https://doi.org/10.1002/smll.202302266</u>.

[6] F. Zhao, G. Hai, X. Li, Z. Jiang, H. Wang, Enhanced electrocatalytic nitrate reduction to ammonia on cobalt oxide nanosheets via multiscale defect modulation, Chemical Engineering Journal 461 (2023) 141960. https://doi.org/10.1016/j.cej.2023.141960.

[7] G.F. Chen, Y. Yuan, H. Jiang, S.Y. Ren, H. Wang, Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper–molecular solid catalyst, Nature Energy 5(8) (2020) 1-9.

[8] L. Xie, L. Hu, Q. Liu, S. Sun, L. Zhang, D. Zhao, Q. Liu, J. Chen, J. Li, L. Ouyang, A.A. Alshehri, Q. Kong, X. Sun, High-performance electrochemical nitrate reduction to ammonia under ambient conditions using NiFe2O4 nanosheet arrays, Inorganic Chemistry Frontiers 9(14) (2022) 3392-3397. https://doi.org/10.1039/d2qi00827k.

[9] F. Du, J. Li, C. Wang, J. Yao, Z. Tan, Z. Yao, C. Li, C. Guo, Active sites-rich layered double hydroxide for nitrate-to-ammonia production with high selectivity and stability, Chemical Engineering Journal 434 (2022) 134641. <u>https://doi.org/10.1016/j.cej.2022.134641</u>.

[10] Z. Li, G. Wen, J. Liang, T. Li, Y. Luo, Q. Kong, X. Shi, A.M. Asiri, Q. Liu, X. Sun, High-efficiency nitrate electroreduction to ammonia on electrodeposited cobalt-phosphorus alloy film, Chem Commun (Camb) 57(76) (2021) 9720-9723. <u>https://doi.org/10.1039/d1cc02612g</u>.